123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361 |
- // This file is part of Eigen, a lightweight C++ template library
- // for linear algebra.
- //
- // Copyright (C) 2016
- // Mehdi Goli Codeplay Software Ltd.
- // Ralph Potter Codeplay Software Ltd.
- // Luke Iwanski Codeplay Software Ltd.
- // Contact: <eigen@codeplay.com>
- // Benoit Steiner <benoit.steiner.goog@gmail.com>
- //
- // This Source Code Form is subject to the terms of the Mozilla
- // Public License v. 2.0. If a copy of the MPL was not distributed
- // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
- #define EIGEN_TEST_NO_LONGDOUBLE
- #define EIGEN_TEST_NO_COMPLEX
- #define EIGEN_DEFAULT_DENSE_INDEX_TYPE int64_t
- #define EIGEN_USE_SYCL
- #include "main.h"
- #include <unsupported/Eigen/CXX11/Tensor>
- using Eigen::array;
- using Eigen::SyclDevice;
- using Eigen::Tensor;
- using Eigen::TensorMap;
- template <typename DataType, int DataLayout, typename IndexType>
- void test_sycl_mem_transfers(const Eigen::SyclDevice &sycl_device) {
- IndexType sizeDim1 = 5;
- IndexType sizeDim2 = 5;
- IndexType sizeDim3 = 1;
- array<IndexType, 3> tensorRange = {{sizeDim1, sizeDim2, sizeDim3}};
- Tensor<DataType, 3, DataLayout, IndexType> in1(tensorRange);
- Tensor<DataType, 3, DataLayout, IndexType> out1(tensorRange);
- Tensor<DataType, 3, DataLayout, IndexType> out2(tensorRange);
- Tensor<DataType, 3, DataLayout, IndexType> out3(tensorRange);
- in1 = in1.random();
- DataType* gpu_data1 = static_cast<DataType*>(sycl_device.allocate(in1.size()*sizeof(DataType)));
- DataType* gpu_data2 = static_cast<DataType*>(sycl_device.allocate(out1.size()*sizeof(DataType)));
- TensorMap<Tensor<DataType, 3, DataLayout, IndexType>> gpu1(gpu_data1, tensorRange);
- TensorMap<Tensor<DataType, 3, DataLayout, IndexType>> gpu2(gpu_data2, tensorRange);
- sycl_device.memcpyHostToDevice(gpu_data1, in1.data(),(in1.size())*sizeof(DataType));
- sycl_device.memcpyHostToDevice(gpu_data2, in1.data(),(in1.size())*sizeof(DataType));
- gpu1.device(sycl_device) = gpu1 * 3.14f;
- gpu2.device(sycl_device) = gpu2 * 2.7f;
- sycl_device.memcpyDeviceToHost(out1.data(), gpu_data1,(out1.size())*sizeof(DataType));
- sycl_device.memcpyDeviceToHost(out2.data(), gpu_data1,(out2.size())*sizeof(DataType));
- sycl_device.memcpyDeviceToHost(out3.data(), gpu_data2,(out3.size())*sizeof(DataType));
- sycl_device.synchronize();
- for (IndexType i = 0; i < in1.size(); ++i) {
- // std::cout << "SYCL DATA : " << out1(i) << " vs CPU DATA : " << in1(i) * 3.14f << "\n";
- VERIFY_IS_APPROX(out1(i), in1(i) * 3.14f);
- VERIFY_IS_APPROX(out2(i), in1(i) * 3.14f);
- VERIFY_IS_APPROX(out3(i), in1(i) * 2.7f);
- }
- sycl_device.deallocate(gpu_data1);
- sycl_device.deallocate(gpu_data2);
- }
- template <typename DataType, int DataLayout, typename IndexType>
- void test_sycl_mem_sync(const Eigen::SyclDevice &sycl_device) {
- IndexType size = 20;
- array<IndexType, 1> tensorRange = {{size}};
- Tensor<DataType, 1, DataLayout, IndexType> in1(tensorRange);
- Tensor<DataType, 1, DataLayout, IndexType> in2(tensorRange);
- Tensor<DataType, 1, DataLayout, IndexType> out(tensorRange);
- in1 = in1.random();
- in2 = in1;
- DataType* gpu_data = static_cast<DataType*>(sycl_device.allocate(in1.size()*sizeof(DataType)));
- TensorMap<Tensor<DataType, 1, DataLayout, IndexType>> gpu1(gpu_data, tensorRange);
- sycl_device.memcpyHostToDevice(gpu_data, in1.data(),(in1.size())*sizeof(DataType));
- sycl_device.synchronize();
- in1.setZero();
- sycl_device.memcpyDeviceToHost(out.data(), gpu_data, out.size()*sizeof(DataType));
- sycl_device.synchronize();
- for (IndexType i = 0; i < in1.size(); ++i) {
- VERIFY_IS_APPROX(out(i), in2(i));
- }
- sycl_device.deallocate(gpu_data);
- }
- template <typename DataType, int DataLayout, typename IndexType>
- void test_sycl_mem_sync_offsets(const Eigen::SyclDevice &sycl_device) {
- using tensor_type = Tensor<DataType, 1, DataLayout, IndexType>;
- IndexType full_size = 32;
- IndexType half_size = full_size / 2;
- array<IndexType, 1> tensorRange = {{full_size}};
- tensor_type in1(tensorRange);
- tensor_type out(tensorRange);
- DataType* gpu_data = static_cast<DataType*>(sycl_device.allocate(full_size * sizeof(DataType)));
- TensorMap<tensor_type> gpu1(gpu_data, tensorRange);
- in1 = in1.random();
- // Copy all data to device, then permute on copy back to host
- sycl_device.memcpyHostToDevice(gpu_data, in1.data(), full_size * sizeof(DataType));
- sycl_device.memcpyDeviceToHost(out.data(), gpu_data + half_size, half_size * sizeof(DataType));
- sycl_device.memcpyDeviceToHost(out.data() + half_size, gpu_data, half_size * sizeof(DataType));
- for (IndexType i = 0; i < half_size; ++i) {
- VERIFY_IS_APPROX(out(i), in1(i + half_size));
- VERIFY_IS_APPROX(out(i + half_size), in1(i));
- }
- in1 = in1.random();
- out.setZero();
- // Permute copies to device, then copy all back to host
- sycl_device.memcpyHostToDevice(gpu_data + half_size, in1.data(), half_size * sizeof(DataType));
- sycl_device.memcpyHostToDevice(gpu_data, in1.data() + half_size, half_size * sizeof(DataType));
- sycl_device.memcpyDeviceToHost(out.data(), gpu_data, full_size * sizeof(DataType));
- for (IndexType i = 0; i < half_size; ++i) {
- VERIFY_IS_APPROX(out(i), in1(i + half_size));
- VERIFY_IS_APPROX(out(i + half_size), in1(i));
- }
- in1 = in1.random();
- out.setZero();
- DataType* gpu_data_out = static_cast<DataType*>(sycl_device.allocate(full_size * sizeof(DataType)));
- TensorMap<tensor_type> gpu2(gpu_data_out, tensorRange);
- // Copy all to device, permute copies on device, then copy all back to host
- sycl_device.memcpyHostToDevice(gpu_data, in1.data(), full_size * sizeof(DataType));
- sycl_device.memcpy(gpu_data_out + half_size, gpu_data, half_size * sizeof(DataType));
- sycl_device.memcpy(gpu_data_out, gpu_data + half_size, half_size * sizeof(DataType));
- sycl_device.memcpyDeviceToHost(out.data(), gpu_data_out, full_size * sizeof(DataType));
- for (IndexType i = 0; i < half_size; ++i) {
- VERIFY_IS_APPROX(out(i), in1(i + half_size));
- VERIFY_IS_APPROX(out(i + half_size), in1(i));
- }
- sycl_device.deallocate(gpu_data_out);
- sycl_device.deallocate(gpu_data);
- }
- template <typename DataType, int DataLayout, typename IndexType>
- void test_sycl_memset_offsets(const Eigen::SyclDevice &sycl_device) {
- using tensor_type = Tensor<DataType, 1, DataLayout, IndexType>;
- IndexType full_size = 32;
- IndexType half_size = full_size / 2;
- array<IndexType, 1> tensorRange = {{full_size}};
- tensor_type cpu_out(tensorRange);
- tensor_type out(tensorRange);
- cpu_out.setZero();
- std::memset(cpu_out.data(), 0, half_size * sizeof(DataType));
- std::memset(cpu_out.data() + half_size, 1, half_size * sizeof(DataType));
- DataType* gpu_data = static_cast<DataType*>(sycl_device.allocate(full_size * sizeof(DataType)));
- TensorMap<tensor_type> gpu1(gpu_data, tensorRange);
- sycl_device.memset(gpu_data, 0, half_size * sizeof(DataType));
- sycl_device.memset(gpu_data + half_size, 1, half_size * sizeof(DataType));
- sycl_device.memcpyDeviceToHost(out.data(), gpu_data, full_size * sizeof(DataType));
- for (IndexType i = 0; i < full_size; ++i) {
- VERIFY_IS_APPROX(out(i), cpu_out(i));
- }
- sycl_device.deallocate(gpu_data);
- }
- template <typename DataType, int DataLayout, typename IndexType>
- void test_sycl_computations(const Eigen::SyclDevice &sycl_device) {
- IndexType sizeDim1 = 100;
- IndexType sizeDim2 = 10;
- IndexType sizeDim3 = 20;
- array<IndexType, 3> tensorRange = {{sizeDim1, sizeDim2, sizeDim3}};
- Tensor<DataType, 3,DataLayout, IndexType> in1(tensorRange);
- Tensor<DataType, 3,DataLayout, IndexType> in2(tensorRange);
- Tensor<DataType, 3,DataLayout, IndexType> in3(tensorRange);
- Tensor<DataType, 3,DataLayout, IndexType> out(tensorRange);
- in2 = in2.random();
- in3 = in3.random();
- DataType * gpu_in1_data = static_cast<DataType*>(sycl_device.allocate(in1.size()*sizeof(DataType)));
- DataType * gpu_in2_data = static_cast<DataType*>(sycl_device.allocate(in2.size()*sizeof(DataType)));
- DataType * gpu_in3_data = static_cast<DataType*>(sycl_device.allocate(in3.size()*sizeof(DataType)));
- DataType * gpu_out_data = static_cast<DataType*>(sycl_device.allocate(out.size()*sizeof(DataType)));
- TensorMap<Tensor<DataType, 3, DataLayout, IndexType>> gpu_in1(gpu_in1_data, tensorRange);
- TensorMap<Tensor<DataType, 3, DataLayout, IndexType>> gpu_in2(gpu_in2_data, tensorRange);
- TensorMap<Tensor<DataType, 3, DataLayout, IndexType>> gpu_in3(gpu_in3_data, tensorRange);
- TensorMap<Tensor<DataType, 3, DataLayout, IndexType>> gpu_out(gpu_out_data, tensorRange);
- /// a=1.2f
- gpu_in1.device(sycl_device) = gpu_in1.constant(1.2f);
- sycl_device.memcpyDeviceToHost(in1.data(), gpu_in1_data ,(in1.size())*sizeof(DataType));
- sycl_device.synchronize();
- for (IndexType i = 0; i < sizeDim1; ++i) {
- for (IndexType j = 0; j < sizeDim2; ++j) {
- for (IndexType k = 0; k < sizeDim3; ++k) {
- VERIFY_IS_APPROX(in1(i,j,k), 1.2f);
- }
- }
- }
- printf("a=1.2f Test passed\n");
- /// a=b*1.2f
- gpu_out.device(sycl_device) = gpu_in1 * 1.2f;
- sycl_device.memcpyDeviceToHost(out.data(), gpu_out_data ,(out.size())*sizeof(DataType));
- sycl_device.synchronize();
- for (IndexType i = 0; i < sizeDim1; ++i) {
- for (IndexType j = 0; j < sizeDim2; ++j) {
- for (IndexType k = 0; k < sizeDim3; ++k) {
- VERIFY_IS_APPROX(out(i,j,k),
- in1(i,j,k) * 1.2f);
- }
- }
- }
- printf("a=b*1.2f Test Passed\n");
- /// c=a*b
- sycl_device.memcpyHostToDevice(gpu_in2_data, in2.data(),(in2.size())*sizeof(DataType));
- gpu_out.device(sycl_device) = gpu_in1 * gpu_in2;
- sycl_device.memcpyDeviceToHost(out.data(), gpu_out_data,(out.size())*sizeof(DataType));
- sycl_device.synchronize();
- for (IndexType i = 0; i < sizeDim1; ++i) {
- for (IndexType j = 0; j < sizeDim2; ++j) {
- for (IndexType k = 0; k < sizeDim3; ++k) {
- VERIFY_IS_APPROX(out(i,j,k),
- in1(i,j,k) *
- in2(i,j,k));
- }
- }
- }
- printf("c=a*b Test Passed\n");
- /// c=a+b
- gpu_out.device(sycl_device) = gpu_in1 + gpu_in2;
- sycl_device.memcpyDeviceToHost(out.data(), gpu_out_data,(out.size())*sizeof(DataType));
- sycl_device.synchronize();
- for (IndexType i = 0; i < sizeDim1; ++i) {
- for (IndexType j = 0; j < sizeDim2; ++j) {
- for (IndexType k = 0; k < sizeDim3; ++k) {
- VERIFY_IS_APPROX(out(i,j,k),
- in1(i,j,k) +
- in2(i,j,k));
- }
- }
- }
- printf("c=a+b Test Passed\n");
- /// c=a*a
- gpu_out.device(sycl_device) = gpu_in1 * gpu_in1;
- sycl_device.memcpyDeviceToHost(out.data(), gpu_out_data,(out.size())*sizeof(DataType));
- sycl_device.synchronize();
- for (IndexType i = 0; i < sizeDim1; ++i) {
- for (IndexType j = 0; j < sizeDim2; ++j) {
- for (IndexType k = 0; k < sizeDim3; ++k) {
- VERIFY_IS_APPROX(out(i,j,k),
- in1(i,j,k) *
- in1(i,j,k));
- }
- }
- }
- printf("c= a*a Test Passed\n");
- //a*3.14f + b*2.7f
- gpu_out.device(sycl_device) = gpu_in1 * gpu_in1.constant(3.14f) + gpu_in2 * gpu_in2.constant(2.7f);
- sycl_device.memcpyDeviceToHost(out.data(),gpu_out_data,(out.size())*sizeof(DataType));
- sycl_device.synchronize();
- for (IndexType i = 0; i < sizeDim1; ++i) {
- for (IndexType j = 0; j < sizeDim2; ++j) {
- for (IndexType k = 0; k < sizeDim3; ++k) {
- VERIFY_IS_APPROX(out(i,j,k),
- in1(i,j,k) * 3.14f
- + in2(i,j,k) * 2.7f);
- }
- }
- }
- printf("a*3.14f + b*2.7f Test Passed\n");
- ///d= (a>0.5? b:c)
- sycl_device.memcpyHostToDevice(gpu_in3_data, in3.data(),(in3.size())*sizeof(DataType));
- gpu_out.device(sycl_device) =(gpu_in1 > gpu_in1.constant(0.5f)).select(gpu_in2, gpu_in3);
- sycl_device.memcpyDeviceToHost(out.data(), gpu_out_data,(out.size())*sizeof(DataType));
- sycl_device.synchronize();
- for (IndexType i = 0; i < sizeDim1; ++i) {
- for (IndexType j = 0; j < sizeDim2; ++j) {
- for (IndexType k = 0; k < sizeDim3; ++k) {
- VERIFY_IS_APPROX(out(i, j, k), (in1(i, j, k) > 0.5f)
- ? in2(i, j, k)
- : in3(i, j, k));
- }
- }
- }
- printf("d= (a>0.5? b:c) Test Passed\n");
- sycl_device.deallocate(gpu_in1_data);
- sycl_device.deallocate(gpu_in2_data);
- sycl_device.deallocate(gpu_in3_data);
- sycl_device.deallocate(gpu_out_data);
- }
- template<typename Scalar1, typename Scalar2, int DataLayout, typename IndexType>
- static void test_sycl_cast(const Eigen::SyclDevice& sycl_device){
- IndexType size = 20;
- array<IndexType, 1> tensorRange = {{size}};
- Tensor<Scalar1, 1, DataLayout, IndexType> in(tensorRange);
- Tensor<Scalar2, 1, DataLayout, IndexType> out(tensorRange);
- Tensor<Scalar2, 1, DataLayout, IndexType> out_host(tensorRange);
- in = in.random();
- Scalar1* gpu_in_data = static_cast<Scalar1*>(sycl_device.allocate(in.size()*sizeof(Scalar1)));
- Scalar2 * gpu_out_data = static_cast<Scalar2*>(sycl_device.allocate(out.size()*sizeof(Scalar2)));
- TensorMap<Tensor<Scalar1, 1, DataLayout, IndexType>> gpu_in(gpu_in_data, tensorRange);
- TensorMap<Tensor<Scalar2, 1, DataLayout, IndexType>> gpu_out(gpu_out_data, tensorRange);
- sycl_device.memcpyHostToDevice(gpu_in_data, in.data(),(in.size())*sizeof(Scalar1));
- gpu_out.device(sycl_device) = gpu_in. template cast<Scalar2>();
- sycl_device.memcpyDeviceToHost(out.data(), gpu_out_data, out.size()*sizeof(Scalar2));
- out_host = in. template cast<Scalar2>();
- for(IndexType i=0; i< size; i++)
- {
- VERIFY_IS_APPROX(out(i), out_host(i));
- }
- printf("cast Test Passed\n");
- sycl_device.deallocate(gpu_in_data);
- sycl_device.deallocate(gpu_out_data);
- }
- template<typename DataType, typename dev_Selector> void sycl_computing_test_per_device(dev_Selector s){
- QueueInterface queueInterface(s);
- auto sycl_device = Eigen::SyclDevice(&queueInterface);
- test_sycl_mem_transfers<DataType, RowMajor, int64_t>(sycl_device);
- test_sycl_computations<DataType, RowMajor, int64_t>(sycl_device);
- test_sycl_mem_sync<DataType, RowMajor, int64_t>(sycl_device);
- test_sycl_mem_sync_offsets<DataType, RowMajor, int64_t>(sycl_device);
- test_sycl_memset_offsets<DataType, RowMajor, int64_t>(sycl_device);
- test_sycl_mem_transfers<DataType, ColMajor, int64_t>(sycl_device);
- test_sycl_computations<DataType, ColMajor, int64_t>(sycl_device);
- test_sycl_mem_sync<DataType, ColMajor, int64_t>(sycl_device);
- test_sycl_cast<DataType, int, RowMajor, int64_t>(sycl_device);
- test_sycl_cast<DataType, int, ColMajor, int64_t>(sycl_device);
- }
- EIGEN_DECLARE_TEST(cxx11_tensor_sycl) {
- for (const auto& device :Eigen::get_sycl_supported_devices()) {
- CALL_SUBTEST(sycl_computing_test_per_device<float>(device));
- }
- }
|