12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643 |
- // This file is part of Eigen, a lightweight C++ template library
- // for linear algebra.
- //
- // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
- //
- // This Source Code Form is subject to the terms of the Mozilla
- // Public License v. 2.0. If a copy of the MPL was not distributed
- // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
- #define EIGEN_TEST_NO_LONGDOUBLE
- #define EIGEN_TEST_NO_COMPLEX
- #define EIGEN_USE_GPU
- #include "main.h"
- #include <unsupported/Eigen/CXX11/Tensor>
- #include <unsupported/Eigen/CXX11/src/Tensor/TensorGpuHipCudaDefines.h>
- #define EIGEN_GPU_TEST_C99_MATH EIGEN_HAS_CXX11
- using Eigen::Tensor;
- void test_gpu_nullary() {
- Tensor<float, 1, 0, int> in1(2);
- Tensor<float, 1, 0, int> in2(2);
- in1.setRandom();
- in2.setRandom();
- std::size_t tensor_bytes = in1.size() * sizeof(float);
- float* d_in1;
- float* d_in2;
- gpuMalloc((void**)(&d_in1), tensor_bytes);
- gpuMalloc((void**)(&d_in2), tensor_bytes);
- gpuMemcpy(d_in1, in1.data(), tensor_bytes, gpuMemcpyHostToDevice);
- gpuMemcpy(d_in2, in2.data(), tensor_bytes, gpuMemcpyHostToDevice);
- Eigen::GpuStreamDevice stream;
- Eigen::GpuDevice gpu_device(&stream);
- Eigen::TensorMap<Eigen::Tensor<float, 1, 0, int>, Eigen::Aligned> gpu_in1(
- d_in1, 2);
- Eigen::TensorMap<Eigen::Tensor<float, 1, 0, int>, Eigen::Aligned> gpu_in2(
- d_in2, 2);
- gpu_in1.device(gpu_device) = gpu_in1.constant(3.14f);
- gpu_in2.device(gpu_device) = gpu_in2.random();
- Tensor<float, 1, 0, int> new1(2);
- Tensor<float, 1, 0, int> new2(2);
- assert(gpuMemcpyAsync(new1.data(), d_in1, tensor_bytes, gpuMemcpyDeviceToHost,
- gpu_device.stream()) == gpuSuccess);
- assert(gpuMemcpyAsync(new2.data(), d_in2, tensor_bytes, gpuMemcpyDeviceToHost,
- gpu_device.stream()) == gpuSuccess);
- assert(gpuStreamSynchronize(gpu_device.stream()) == gpuSuccess);
- for (int i = 0; i < 2; ++i) {
- VERIFY_IS_APPROX(new1(i), 3.14f);
- VERIFY_IS_NOT_EQUAL(new2(i), in2(i));
- }
- gpuFree(d_in1);
- gpuFree(d_in2);
- }
- void test_gpu_elementwise_small() {
- Tensor<float, 1> in1(Eigen::array<Eigen::DenseIndex, 1>(2));
- Tensor<float, 1> in2(Eigen::array<Eigen::DenseIndex, 1>(2));
- Tensor<float, 1> out(Eigen::array<Eigen::DenseIndex, 1>(2));
- in1.setRandom();
- in2.setRandom();
- std::size_t in1_bytes = in1.size() * sizeof(float);
- std::size_t in2_bytes = in2.size() * sizeof(float);
- std::size_t out_bytes = out.size() * sizeof(float);
- float* d_in1;
- float* d_in2;
- float* d_out;
- gpuMalloc((void**)(&d_in1), in1_bytes);
- gpuMalloc((void**)(&d_in2), in2_bytes);
- gpuMalloc((void**)(&d_out), out_bytes);
- gpuMemcpy(d_in1, in1.data(), in1_bytes, gpuMemcpyHostToDevice);
- gpuMemcpy(d_in2, in2.data(), in2_bytes, gpuMemcpyHostToDevice);
- Eigen::GpuStreamDevice stream;
- Eigen::GpuDevice gpu_device(&stream);
- Eigen::TensorMap<Eigen::Tensor<float, 1>, Eigen::Aligned> gpu_in1(
- d_in1, Eigen::array<Eigen::DenseIndex, 1>(2));
- Eigen::TensorMap<Eigen::Tensor<float, 1>, Eigen::Aligned> gpu_in2(
- d_in2, Eigen::array<Eigen::DenseIndex, 1>(2));
- Eigen::TensorMap<Eigen::Tensor<float, 1>, Eigen::Aligned> gpu_out(
- d_out, Eigen::array<Eigen::DenseIndex, 1>(2));
- gpu_out.device(gpu_device) = gpu_in1 + gpu_in2;
- assert(gpuMemcpyAsync(out.data(), d_out, out_bytes, gpuMemcpyDeviceToHost,
- gpu_device.stream()) == gpuSuccess);
- assert(gpuStreamSynchronize(gpu_device.stream()) == gpuSuccess);
- for (int i = 0; i < 2; ++i) {
- VERIFY_IS_APPROX(
- out(Eigen::array<Eigen::DenseIndex, 1>(i)),
- in1(Eigen::array<Eigen::DenseIndex, 1>(i)) + in2(Eigen::array<Eigen::DenseIndex, 1>(i)));
- }
- gpuFree(d_in1);
- gpuFree(d_in2);
- gpuFree(d_out);
- }
- void test_gpu_elementwise()
- {
- Tensor<float, 3> in1(Eigen::array<Eigen::DenseIndex, 3>(72,53,97));
- Tensor<float, 3> in2(Eigen::array<Eigen::DenseIndex, 3>(72,53,97));
- Tensor<float, 3> in3(Eigen::array<Eigen::DenseIndex, 3>(72,53,97));
- Tensor<float, 3> out(Eigen::array<Eigen::DenseIndex, 3>(72,53,97));
- in1.setRandom();
- in2.setRandom();
- in3.setRandom();
- std::size_t in1_bytes = in1.size() * sizeof(float);
- std::size_t in2_bytes = in2.size() * sizeof(float);
- std::size_t in3_bytes = in3.size() * sizeof(float);
- std::size_t out_bytes = out.size() * sizeof(float);
- float* d_in1;
- float* d_in2;
- float* d_in3;
- float* d_out;
- gpuMalloc((void**)(&d_in1), in1_bytes);
- gpuMalloc((void**)(&d_in2), in2_bytes);
- gpuMalloc((void**)(&d_in3), in3_bytes);
- gpuMalloc((void**)(&d_out), out_bytes);
- gpuMemcpy(d_in1, in1.data(), in1_bytes, gpuMemcpyHostToDevice);
- gpuMemcpy(d_in2, in2.data(), in2_bytes, gpuMemcpyHostToDevice);
- gpuMemcpy(d_in3, in3.data(), in3_bytes, gpuMemcpyHostToDevice);
- Eigen::GpuStreamDevice stream;
- Eigen::GpuDevice gpu_device(&stream);
- Eigen::TensorMap<Eigen::Tensor<float, 3> > gpu_in1(d_in1, Eigen::array<Eigen::DenseIndex, 3>(72,53,97));
- Eigen::TensorMap<Eigen::Tensor<float, 3> > gpu_in2(d_in2, Eigen::array<Eigen::DenseIndex, 3>(72,53,97));
- Eigen::TensorMap<Eigen::Tensor<float, 3> > gpu_in3(d_in3, Eigen::array<Eigen::DenseIndex, 3>(72,53,97));
- Eigen::TensorMap<Eigen::Tensor<float, 3> > gpu_out(d_out, Eigen::array<Eigen::DenseIndex, 3>(72,53,97));
- gpu_out.device(gpu_device) = gpu_in1 + gpu_in2 * gpu_in3;
- assert(gpuMemcpyAsync(out.data(), d_out, out_bytes, gpuMemcpyDeviceToHost, gpu_device.stream()) == gpuSuccess);
- assert(gpuStreamSynchronize(gpu_device.stream()) == gpuSuccess);
- for (int i = 0; i < 72; ++i) {
- for (int j = 0; j < 53; ++j) {
- for (int k = 0; k < 97; ++k) {
- VERIFY_IS_APPROX(out(Eigen::array<Eigen::DenseIndex, 3>(i,j,k)), in1(Eigen::array<Eigen::DenseIndex, 3>(i,j,k)) + in2(Eigen::array<Eigen::DenseIndex, 3>(i,j,k)) * in3(Eigen::array<Eigen::DenseIndex, 3>(i,j,k)));
- }
- }
- }
- gpuFree(d_in1);
- gpuFree(d_in2);
- gpuFree(d_in3);
- gpuFree(d_out);
- }
- void test_gpu_props() {
- Tensor<float, 1> in1(200);
- Tensor<bool, 1> out(200);
- in1.setRandom();
- std::size_t in1_bytes = in1.size() * sizeof(float);
- std::size_t out_bytes = out.size() * sizeof(bool);
- float* d_in1;
- bool* d_out;
- gpuMalloc((void**)(&d_in1), in1_bytes);
- gpuMalloc((void**)(&d_out), out_bytes);
- gpuMemcpy(d_in1, in1.data(), in1_bytes, gpuMemcpyHostToDevice);
- Eigen::GpuStreamDevice stream;
- Eigen::GpuDevice gpu_device(&stream);
- Eigen::TensorMap<Eigen::Tensor<float, 1>, Eigen::Aligned> gpu_in1(
- d_in1, 200);
- Eigen::TensorMap<Eigen::Tensor<bool, 1>, Eigen::Aligned> gpu_out(
- d_out, 200);
- gpu_out.device(gpu_device) = (gpu_in1.isnan)();
- assert(gpuMemcpyAsync(out.data(), d_out, out_bytes, gpuMemcpyDeviceToHost,
- gpu_device.stream()) == gpuSuccess);
- assert(gpuStreamSynchronize(gpu_device.stream()) == gpuSuccess);
- for (int i = 0; i < 200; ++i) {
- VERIFY_IS_EQUAL(out(i), (std::isnan)(in1(i)));
- }
- gpuFree(d_in1);
- gpuFree(d_out);
- }
- void test_gpu_reduction()
- {
- Tensor<float, 4> in1(72,53,97,113);
- Tensor<float, 2> out(72,97);
- in1.setRandom();
- std::size_t in1_bytes = in1.size() * sizeof(float);
- std::size_t out_bytes = out.size() * sizeof(float);
- float* d_in1;
- float* d_out;
- gpuMalloc((void**)(&d_in1), in1_bytes);
- gpuMalloc((void**)(&d_out), out_bytes);
- gpuMemcpy(d_in1, in1.data(), in1_bytes, gpuMemcpyHostToDevice);
- Eigen::GpuStreamDevice stream;
- Eigen::GpuDevice gpu_device(&stream);
- Eigen::TensorMap<Eigen::Tensor<float, 4> > gpu_in1(d_in1, 72,53,97,113);
- Eigen::TensorMap<Eigen::Tensor<float, 2> > gpu_out(d_out, 72,97);
- array<Eigen::DenseIndex, 2> reduction_axis;
- reduction_axis[0] = 1;
- reduction_axis[1] = 3;
- gpu_out.device(gpu_device) = gpu_in1.maximum(reduction_axis);
- assert(gpuMemcpyAsync(out.data(), d_out, out_bytes, gpuMemcpyDeviceToHost, gpu_device.stream()) == gpuSuccess);
- assert(gpuStreamSynchronize(gpu_device.stream()) == gpuSuccess);
- for (int i = 0; i < 72; ++i) {
- for (int j = 0; j < 97; ++j) {
- float expected = 0;
- for (int k = 0; k < 53; ++k) {
- for (int l = 0; l < 113; ++l) {
- expected =
- std::max<float>(expected, in1(i, k, j, l));
- }
- }
- VERIFY_IS_APPROX(out(i,j), expected);
- }
- }
- gpuFree(d_in1);
- gpuFree(d_out);
- }
- template<int DataLayout>
- void test_gpu_contraction()
- {
- // with these dimensions, the output has 300 * 140 elements, which is
- // more than 30 * 1024, which is the number of threads in blocks on
- // a 15 SM GK110 GPU
- Tensor<float, 4, DataLayout> t_left(6, 50, 3, 31);
- Tensor<float, 5, DataLayout> t_right(Eigen::array<Eigen::DenseIndex, 5>(3, 31, 7, 20, 1));
- Tensor<float, 5, DataLayout> t_result(Eigen::array<Eigen::DenseIndex, 5>(6, 50, 7, 20, 1));
- t_left.setRandom();
- t_right.setRandom();
- std::size_t t_left_bytes = t_left.size() * sizeof(float);
- std::size_t t_right_bytes = t_right.size() * sizeof(float);
- std::size_t t_result_bytes = t_result.size() * sizeof(float);
- float* d_t_left;
- float* d_t_right;
- float* d_t_result;
- gpuMalloc((void**)(&d_t_left), t_left_bytes);
- gpuMalloc((void**)(&d_t_right), t_right_bytes);
- gpuMalloc((void**)(&d_t_result), t_result_bytes);
- gpuMemcpy(d_t_left, t_left.data(), t_left_bytes, gpuMemcpyHostToDevice);
- gpuMemcpy(d_t_right, t_right.data(), t_right_bytes, gpuMemcpyHostToDevice);
- Eigen::GpuStreamDevice stream;
- Eigen::GpuDevice gpu_device(&stream);
- Eigen::TensorMap<Eigen::Tensor<float, 4, DataLayout> > gpu_t_left(d_t_left, 6, 50, 3, 31);
- Eigen::TensorMap<Eigen::Tensor<float, 5, DataLayout> > gpu_t_right(d_t_right, 3, 31, 7, 20, 1);
- Eigen::TensorMap<Eigen::Tensor<float, 5, DataLayout> > gpu_t_result(d_t_result, 6, 50, 7, 20, 1);
- typedef Eigen::Map<Eigen::Matrix<float, Dynamic, Dynamic, DataLayout> > MapXf;
- MapXf m_left(t_left.data(), 300, 93);
- MapXf m_right(t_right.data(), 93, 140);
- Eigen::Matrix<float, Dynamic, Dynamic, DataLayout> m_result(300, 140);
- typedef Tensor<float, 1>::DimensionPair DimPair;
- Eigen::array<DimPair, 2> dims;
- dims[0] = DimPair(2, 0);
- dims[1] = DimPair(3, 1);
- m_result = m_left * m_right;
- gpu_t_result.device(gpu_device) = gpu_t_left.contract(gpu_t_right, dims);
- gpuMemcpy(t_result.data(), d_t_result, t_result_bytes, gpuMemcpyDeviceToHost);
- for (DenseIndex i = 0; i < t_result.size(); i++) {
- if (fabs(t_result.data()[i] - m_result.data()[i]) >= 1e-4f) {
- std::cout << "mismatch detected at index " << i << ": " << t_result.data()[i] << " vs " << m_result.data()[i] << std::endl;
- assert(false);
- }
- }
- gpuFree(d_t_left);
- gpuFree(d_t_right);
- gpuFree(d_t_result);
- }
- template<int DataLayout>
- void test_gpu_convolution_1d()
- {
- Tensor<float, 4, DataLayout> input(74,37,11,137);
- Tensor<float, 1, DataLayout> kernel(4);
- Tensor<float, 4, DataLayout> out(74,34,11,137);
- input = input.constant(10.0f) + input.random();
- kernel = kernel.constant(7.0f) + kernel.random();
- std::size_t input_bytes = input.size() * sizeof(float);
- std::size_t kernel_bytes = kernel.size() * sizeof(float);
- std::size_t out_bytes = out.size() * sizeof(float);
- float* d_input;
- float* d_kernel;
- float* d_out;
- gpuMalloc((void**)(&d_input), input_bytes);
- gpuMalloc((void**)(&d_kernel), kernel_bytes);
- gpuMalloc((void**)(&d_out), out_bytes);
- gpuMemcpy(d_input, input.data(), input_bytes, gpuMemcpyHostToDevice);
- gpuMemcpy(d_kernel, kernel.data(), kernel_bytes, gpuMemcpyHostToDevice);
- Eigen::GpuStreamDevice stream;
- Eigen::GpuDevice gpu_device(&stream);
- Eigen::TensorMap<Eigen::Tensor<float, 4, DataLayout> > gpu_input(d_input, 74,37,11,137);
- Eigen::TensorMap<Eigen::Tensor<float, 1, DataLayout> > gpu_kernel(d_kernel, 4);
- Eigen::TensorMap<Eigen::Tensor<float, 4, DataLayout> > gpu_out(d_out, 74,34,11,137);
- Eigen::array<Eigen::DenseIndex, 1> dims(1);
- gpu_out.device(gpu_device) = gpu_input.convolve(gpu_kernel, dims);
- assert(gpuMemcpyAsync(out.data(), d_out, out_bytes, gpuMemcpyDeviceToHost, gpu_device.stream()) == gpuSuccess);
- assert(gpuStreamSynchronize(gpu_device.stream()) == gpuSuccess);
- for (int i = 0; i < 74; ++i) {
- for (int j = 0; j < 34; ++j) {
- for (int k = 0; k < 11; ++k) {
- for (int l = 0; l < 137; ++l) {
- const float result = out(i,j,k,l);
- const float expected = input(i,j+0,k,l) * kernel(0) + input(i,j+1,k,l) * kernel(1) +
- input(i,j+2,k,l) * kernel(2) + input(i,j+3,k,l) * kernel(3);
- VERIFY_IS_APPROX(result, expected);
- }
- }
- }
- }
- gpuFree(d_input);
- gpuFree(d_kernel);
- gpuFree(d_out);
- }
- void test_gpu_convolution_inner_dim_col_major_1d()
- {
- Tensor<float, 4, ColMajor> input(74,9,11,7);
- Tensor<float, 1, ColMajor> kernel(4);
- Tensor<float, 4, ColMajor> out(71,9,11,7);
- input = input.constant(10.0f) + input.random();
- kernel = kernel.constant(7.0f) + kernel.random();
- std::size_t input_bytes = input.size() * sizeof(float);
- std::size_t kernel_bytes = kernel.size() * sizeof(float);
- std::size_t out_bytes = out.size() * sizeof(float);
- float* d_input;
- float* d_kernel;
- float* d_out;
- gpuMalloc((void**)(&d_input), input_bytes);
- gpuMalloc((void**)(&d_kernel), kernel_bytes);
- gpuMalloc((void**)(&d_out), out_bytes);
- gpuMemcpy(d_input, input.data(), input_bytes, gpuMemcpyHostToDevice);
- gpuMemcpy(d_kernel, kernel.data(), kernel_bytes, gpuMemcpyHostToDevice);
- Eigen::GpuStreamDevice stream;
- Eigen::GpuDevice gpu_device(&stream);
- Eigen::TensorMap<Eigen::Tensor<float, 4, ColMajor> > gpu_input(d_input,74,9,11,7);
- Eigen::TensorMap<Eigen::Tensor<float, 1, ColMajor> > gpu_kernel(d_kernel,4);
- Eigen::TensorMap<Eigen::Tensor<float, 4, ColMajor> > gpu_out(d_out,71,9,11,7);
- Eigen::array<Eigen::DenseIndex, 1> dims(0);
- gpu_out.device(gpu_device) = gpu_input.convolve(gpu_kernel, dims);
- assert(gpuMemcpyAsync(out.data(), d_out, out_bytes, gpuMemcpyDeviceToHost, gpu_device.stream()) == gpuSuccess);
- assert(gpuStreamSynchronize(gpu_device.stream()) == gpuSuccess);
- for (int i = 0; i < 71; ++i) {
- for (int j = 0; j < 9; ++j) {
- for (int k = 0; k < 11; ++k) {
- for (int l = 0; l < 7; ++l) {
- const float result = out(i,j,k,l);
- const float expected = input(i+0,j,k,l) * kernel(0) + input(i+1,j,k,l) * kernel(1) +
- input(i+2,j,k,l) * kernel(2) + input(i+3,j,k,l) * kernel(3);
- VERIFY_IS_APPROX(result, expected);
- }
- }
- }
- }
- gpuFree(d_input);
- gpuFree(d_kernel);
- gpuFree(d_out);
- }
- void test_gpu_convolution_inner_dim_row_major_1d()
- {
- Tensor<float, 4, RowMajor> input(7,9,11,74);
- Tensor<float, 1, RowMajor> kernel(4);
- Tensor<float, 4, RowMajor> out(7,9,11,71);
- input = input.constant(10.0f) + input.random();
- kernel = kernel.constant(7.0f) + kernel.random();
- std::size_t input_bytes = input.size() * sizeof(float);
- std::size_t kernel_bytes = kernel.size() * sizeof(float);
- std::size_t out_bytes = out.size() * sizeof(float);
- float* d_input;
- float* d_kernel;
- float* d_out;
- gpuMalloc((void**)(&d_input), input_bytes);
- gpuMalloc((void**)(&d_kernel), kernel_bytes);
- gpuMalloc((void**)(&d_out), out_bytes);
- gpuMemcpy(d_input, input.data(), input_bytes, gpuMemcpyHostToDevice);
- gpuMemcpy(d_kernel, kernel.data(), kernel_bytes, gpuMemcpyHostToDevice);
- Eigen::GpuStreamDevice stream;
- Eigen::GpuDevice gpu_device(&stream);
- Eigen::TensorMap<Eigen::Tensor<float, 4, RowMajor> > gpu_input(d_input, 7,9,11,74);
- Eigen::TensorMap<Eigen::Tensor<float, 1, RowMajor> > gpu_kernel(d_kernel, 4);
- Eigen::TensorMap<Eigen::Tensor<float, 4, RowMajor> > gpu_out(d_out, 7,9,11,71);
- Eigen::array<Eigen::DenseIndex, 1> dims(3);
- gpu_out.device(gpu_device) = gpu_input.convolve(gpu_kernel, dims);
- assert(gpuMemcpyAsync(out.data(), d_out, out_bytes, gpuMemcpyDeviceToHost, gpu_device.stream()) == gpuSuccess);
- assert(gpuStreamSynchronize(gpu_device.stream()) == gpuSuccess);
- for (int i = 0; i < 7; ++i) {
- for (int j = 0; j < 9; ++j) {
- for (int k = 0; k < 11; ++k) {
- for (int l = 0; l < 71; ++l) {
- const float result = out(i,j,k,l);
- const float expected = input(i,j,k,l+0) * kernel(0) + input(i,j,k,l+1) * kernel(1) +
- input(i,j,k,l+2) * kernel(2) + input(i,j,k,l+3) * kernel(3);
- VERIFY_IS_APPROX(result, expected);
- }
- }
- }
- }
- gpuFree(d_input);
- gpuFree(d_kernel);
- gpuFree(d_out);
- }
- template<int DataLayout>
- void test_gpu_convolution_2d()
- {
- Tensor<float, 4, DataLayout> input(74,37,11,137);
- Tensor<float, 2, DataLayout> kernel(3,4);
- Tensor<float, 4, DataLayout> out(74,35,8,137);
- input = input.constant(10.0f) + input.random();
- kernel = kernel.constant(7.0f) + kernel.random();
- std::size_t input_bytes = input.size() * sizeof(float);
- std::size_t kernel_bytes = kernel.size() * sizeof(float);
- std::size_t out_bytes = out.size() * sizeof(float);
- float* d_input;
- float* d_kernel;
- float* d_out;
- gpuMalloc((void**)(&d_input), input_bytes);
- gpuMalloc((void**)(&d_kernel), kernel_bytes);
- gpuMalloc((void**)(&d_out), out_bytes);
- gpuMemcpy(d_input, input.data(), input_bytes, gpuMemcpyHostToDevice);
- gpuMemcpy(d_kernel, kernel.data(), kernel_bytes, gpuMemcpyHostToDevice);
- Eigen::GpuStreamDevice stream;
- Eigen::GpuDevice gpu_device(&stream);
- Eigen::TensorMap<Eigen::Tensor<float, 4, DataLayout> > gpu_input(d_input,74,37,11,137);
- Eigen::TensorMap<Eigen::Tensor<float, 2, DataLayout> > gpu_kernel(d_kernel,3,4);
- Eigen::TensorMap<Eigen::Tensor<float, 4, DataLayout> > gpu_out(d_out,74,35,8,137);
- Eigen::array<Eigen::DenseIndex, 2> dims(1,2);
- gpu_out.device(gpu_device) = gpu_input.convolve(gpu_kernel, dims);
- assert(gpuMemcpyAsync(out.data(), d_out, out_bytes, gpuMemcpyDeviceToHost, gpu_device.stream()) == gpuSuccess);
- assert(gpuStreamSynchronize(gpu_device.stream()) == gpuSuccess);
- for (int i = 0; i < 74; ++i) {
- for (int j = 0; j < 35; ++j) {
- for (int k = 0; k < 8; ++k) {
- for (int l = 0; l < 137; ++l) {
- const float result = out(i,j,k,l);
- const float expected = input(i,j+0,k+0,l) * kernel(0,0) +
- input(i,j+1,k+0,l) * kernel(1,0) +
- input(i,j+2,k+0,l) * kernel(2,0) +
- input(i,j+0,k+1,l) * kernel(0,1) +
- input(i,j+1,k+1,l) * kernel(1,1) +
- input(i,j+2,k+1,l) * kernel(2,1) +
- input(i,j+0,k+2,l) * kernel(0,2) +
- input(i,j+1,k+2,l) * kernel(1,2) +
- input(i,j+2,k+2,l) * kernel(2,2) +
- input(i,j+0,k+3,l) * kernel(0,3) +
- input(i,j+1,k+3,l) * kernel(1,3) +
- input(i,j+2,k+3,l) * kernel(2,3);
- VERIFY_IS_APPROX(result, expected);
- }
- }
- }
- }
- gpuFree(d_input);
- gpuFree(d_kernel);
- gpuFree(d_out);
- }
- template<int DataLayout>
- void test_gpu_convolution_3d()
- {
- Tensor<float, 5, DataLayout> input(Eigen::array<Eigen::DenseIndex, 5>(74,37,11,137,17));
- Tensor<float, 3, DataLayout> kernel(3,4,2);
- Tensor<float, 5, DataLayout> out(Eigen::array<Eigen::DenseIndex, 5>(74,35,8,136,17));
- input = input.constant(10.0f) + input.random();
- kernel = kernel.constant(7.0f) + kernel.random();
- std::size_t input_bytes = input.size() * sizeof(float);
- std::size_t kernel_bytes = kernel.size() * sizeof(float);
- std::size_t out_bytes = out.size() * sizeof(float);
- float* d_input;
- float* d_kernel;
- float* d_out;
- gpuMalloc((void**)(&d_input), input_bytes);
- gpuMalloc((void**)(&d_kernel), kernel_bytes);
- gpuMalloc((void**)(&d_out), out_bytes);
- gpuMemcpy(d_input, input.data(), input_bytes, gpuMemcpyHostToDevice);
- gpuMemcpy(d_kernel, kernel.data(), kernel_bytes, gpuMemcpyHostToDevice);
- Eigen::GpuStreamDevice stream;
- Eigen::GpuDevice gpu_device(&stream);
- Eigen::TensorMap<Eigen::Tensor<float, 5, DataLayout> > gpu_input(d_input,74,37,11,137,17);
- Eigen::TensorMap<Eigen::Tensor<float, 3, DataLayout> > gpu_kernel(d_kernel,3,4,2);
- Eigen::TensorMap<Eigen::Tensor<float, 5, DataLayout> > gpu_out(d_out,74,35,8,136,17);
- Eigen::array<Eigen::DenseIndex, 3> dims(1,2,3);
- gpu_out.device(gpu_device) = gpu_input.convolve(gpu_kernel, dims);
- assert(gpuMemcpyAsync(out.data(), d_out, out_bytes, gpuMemcpyDeviceToHost, gpu_device.stream()) == gpuSuccess);
- assert(gpuStreamSynchronize(gpu_device.stream()) == gpuSuccess);
- for (int i = 0; i < 74; ++i) {
- for (int j = 0; j < 35; ++j) {
- for (int k = 0; k < 8; ++k) {
- for (int l = 0; l < 136; ++l) {
- for (int m = 0; m < 17; ++m) {
- const float result = out(i,j,k,l,m);
- const float expected = input(i,j+0,k+0,l+0,m) * kernel(0,0,0) +
- input(i,j+1,k+0,l+0,m) * kernel(1,0,0) +
- input(i,j+2,k+0,l+0,m) * kernel(2,0,0) +
- input(i,j+0,k+1,l+0,m) * kernel(0,1,0) +
- input(i,j+1,k+1,l+0,m) * kernel(1,1,0) +
- input(i,j+2,k+1,l+0,m) * kernel(2,1,0) +
- input(i,j+0,k+2,l+0,m) * kernel(0,2,0) +
- input(i,j+1,k+2,l+0,m) * kernel(1,2,0) +
- input(i,j+2,k+2,l+0,m) * kernel(2,2,0) +
- input(i,j+0,k+3,l+0,m) * kernel(0,3,0) +
- input(i,j+1,k+3,l+0,m) * kernel(1,3,0) +
- input(i,j+2,k+3,l+0,m) * kernel(2,3,0) +
- input(i,j+0,k+0,l+1,m) * kernel(0,0,1) +
- input(i,j+1,k+0,l+1,m) * kernel(1,0,1) +
- input(i,j+2,k+0,l+1,m) * kernel(2,0,1) +
- input(i,j+0,k+1,l+1,m) * kernel(0,1,1) +
- input(i,j+1,k+1,l+1,m) * kernel(1,1,1) +
- input(i,j+2,k+1,l+1,m) * kernel(2,1,1) +
- input(i,j+0,k+2,l+1,m) * kernel(0,2,1) +
- input(i,j+1,k+2,l+1,m) * kernel(1,2,1) +
- input(i,j+2,k+2,l+1,m) * kernel(2,2,1) +
- input(i,j+0,k+3,l+1,m) * kernel(0,3,1) +
- input(i,j+1,k+3,l+1,m) * kernel(1,3,1) +
- input(i,j+2,k+3,l+1,m) * kernel(2,3,1);
- VERIFY_IS_APPROX(result, expected);
- }
- }
- }
- }
- }
- gpuFree(d_input);
- gpuFree(d_kernel);
- gpuFree(d_out);
- }
- #if EIGEN_GPU_TEST_C99_MATH
- template <typename Scalar>
- void test_gpu_lgamma(const Scalar stddev)
- {
- Tensor<Scalar, 2> in(72,97);
- in.setRandom();
- in *= in.constant(stddev);
- Tensor<Scalar, 2> out(72,97);
- out.setZero();
- std::size_t bytes = in.size() * sizeof(Scalar);
- Scalar* d_in;
- Scalar* d_out;
- gpuMalloc((void**)(&d_in), bytes);
- gpuMalloc((void**)(&d_out), bytes);
- gpuMemcpy(d_in, in.data(), bytes, gpuMemcpyHostToDevice);
- Eigen::GpuStreamDevice stream;
- Eigen::GpuDevice gpu_device(&stream);
- Eigen::TensorMap<Eigen::Tensor<Scalar, 2> > gpu_in(d_in, 72, 97);
- Eigen::TensorMap<Eigen::Tensor<Scalar, 2> > gpu_out(d_out, 72, 97);
- gpu_out.device(gpu_device) = gpu_in.lgamma();
- assert(gpuMemcpyAsync(out.data(), d_out, bytes, gpuMemcpyDeviceToHost, gpu_device.stream()) == gpuSuccess);
- assert(gpuStreamSynchronize(gpu_device.stream()) == gpuSuccess);
- for (int i = 0; i < 72; ++i) {
- for (int j = 0; j < 97; ++j) {
- VERIFY_IS_APPROX(out(i,j), (std::lgamma)(in(i,j)));
- }
- }
- gpuFree(d_in);
- gpuFree(d_out);
- }
- #endif
- template <typename Scalar>
- void test_gpu_digamma()
- {
- Tensor<Scalar, 1> in(7);
- Tensor<Scalar, 1> out(7);
- Tensor<Scalar, 1> expected_out(7);
- out.setZero();
- in(0) = Scalar(1);
- in(1) = Scalar(1.5);
- in(2) = Scalar(4);
- in(3) = Scalar(-10.5);
- in(4) = Scalar(10000.5);
- in(5) = Scalar(0);
- in(6) = Scalar(-1);
- expected_out(0) = Scalar(-0.5772156649015329);
- expected_out(1) = Scalar(0.03648997397857645);
- expected_out(2) = Scalar(1.2561176684318);
- expected_out(3) = Scalar(2.398239129535781);
- expected_out(4) = Scalar(9.210340372392849);
- expected_out(5) = std::numeric_limits<Scalar>::infinity();
- expected_out(6) = std::numeric_limits<Scalar>::infinity();
- std::size_t bytes = in.size() * sizeof(Scalar);
- Scalar* d_in;
- Scalar* d_out;
- gpuMalloc((void**)(&d_in), bytes);
- gpuMalloc((void**)(&d_out), bytes);
- gpuMemcpy(d_in, in.data(), bytes, gpuMemcpyHostToDevice);
- Eigen::GpuStreamDevice stream;
- Eigen::GpuDevice gpu_device(&stream);
- Eigen::TensorMap<Eigen::Tensor<Scalar, 1> > gpu_in(d_in, 7);
- Eigen::TensorMap<Eigen::Tensor<Scalar, 1> > gpu_out(d_out, 7);
- gpu_out.device(gpu_device) = gpu_in.digamma();
- assert(gpuMemcpyAsync(out.data(), d_out, bytes, gpuMemcpyDeviceToHost, gpu_device.stream()) == gpuSuccess);
- assert(gpuStreamSynchronize(gpu_device.stream()) == gpuSuccess);
- for (int i = 0; i < 5; ++i) {
- VERIFY_IS_APPROX(out(i), expected_out(i));
- }
- for (int i = 5; i < 7; ++i) {
- VERIFY_IS_EQUAL(out(i), expected_out(i));
- }
- gpuFree(d_in);
- gpuFree(d_out);
- }
- template <typename Scalar>
- void test_gpu_zeta()
- {
- Tensor<Scalar, 1> in_x(6);
- Tensor<Scalar, 1> in_q(6);
- Tensor<Scalar, 1> out(6);
- Tensor<Scalar, 1> expected_out(6);
- out.setZero();
- in_x(0) = Scalar(1);
- in_x(1) = Scalar(1.5);
- in_x(2) = Scalar(4);
- in_x(3) = Scalar(-10.5);
- in_x(4) = Scalar(10000.5);
- in_x(5) = Scalar(3);
-
- in_q(0) = Scalar(1.2345);
- in_q(1) = Scalar(2);
- in_q(2) = Scalar(1.5);
- in_q(3) = Scalar(3);
- in_q(4) = Scalar(1.0001);
- in_q(5) = Scalar(-2.5);
- expected_out(0) = std::numeric_limits<Scalar>::infinity();
- expected_out(1) = Scalar(1.61237534869);
- expected_out(2) = Scalar(0.234848505667);
- expected_out(3) = Scalar(1.03086757337e-5);
- expected_out(4) = Scalar(0.367879440865);
- expected_out(5) = Scalar(0.054102025820864097);
- std::size_t bytes = in_x.size() * sizeof(Scalar);
- Scalar* d_in_x;
- Scalar* d_in_q;
- Scalar* d_out;
- gpuMalloc((void**)(&d_in_x), bytes);
- gpuMalloc((void**)(&d_in_q), bytes);
- gpuMalloc((void**)(&d_out), bytes);
- gpuMemcpy(d_in_x, in_x.data(), bytes, gpuMemcpyHostToDevice);
- gpuMemcpy(d_in_q, in_q.data(), bytes, gpuMemcpyHostToDevice);
-
- Eigen::GpuStreamDevice stream;
- Eigen::GpuDevice gpu_device(&stream);
- Eigen::TensorMap<Eigen::Tensor<Scalar, 1> > gpu_in_x(d_in_x, 6);
- Eigen::TensorMap<Eigen::Tensor<Scalar, 1> > gpu_in_q(d_in_q, 6);
- Eigen::TensorMap<Eigen::Tensor<Scalar, 1> > gpu_out(d_out, 6);
- gpu_out.device(gpu_device) = gpu_in_x.zeta(gpu_in_q);
- assert(gpuMemcpyAsync(out.data(), d_out, bytes, gpuMemcpyDeviceToHost, gpu_device.stream()) == gpuSuccess);
- assert(gpuStreamSynchronize(gpu_device.stream()) == gpuSuccess);
- VERIFY_IS_EQUAL(out(0), expected_out(0));
- VERIFY((std::isnan)(out(3)));
- for (int i = 1; i < 6; ++i) {
- if (i != 3) {
- VERIFY_IS_APPROX(out(i), expected_out(i));
- }
- }
- gpuFree(d_in_x);
- gpuFree(d_in_q);
- gpuFree(d_out);
- }
- template <typename Scalar>
- void test_gpu_polygamma()
- {
- Tensor<Scalar, 1> in_x(7);
- Tensor<Scalar, 1> in_n(7);
- Tensor<Scalar, 1> out(7);
- Tensor<Scalar, 1> expected_out(7);
- out.setZero();
- in_n(0) = Scalar(1);
- in_n(1) = Scalar(1);
- in_n(2) = Scalar(1);
- in_n(3) = Scalar(17);
- in_n(4) = Scalar(31);
- in_n(5) = Scalar(28);
- in_n(6) = Scalar(8);
-
- in_x(0) = Scalar(2);
- in_x(1) = Scalar(3);
- in_x(2) = Scalar(25.5);
- in_x(3) = Scalar(4.7);
- in_x(4) = Scalar(11.8);
- in_x(5) = Scalar(17.7);
- in_x(6) = Scalar(30.2);
- expected_out(0) = Scalar(0.644934066848);
- expected_out(1) = Scalar(0.394934066848);
- expected_out(2) = Scalar(0.0399946696496);
- expected_out(3) = Scalar(293.334565435);
- expected_out(4) = Scalar(0.445487887616);
- expected_out(5) = Scalar(-2.47810300902e-07);
- expected_out(6) = Scalar(-8.29668781082e-09);
- std::size_t bytes = in_x.size() * sizeof(Scalar);
- Scalar* d_in_x;
- Scalar* d_in_n;
- Scalar* d_out;
- gpuMalloc((void**)(&d_in_x), bytes);
- gpuMalloc((void**)(&d_in_n), bytes);
- gpuMalloc((void**)(&d_out), bytes);
- gpuMemcpy(d_in_x, in_x.data(), bytes, gpuMemcpyHostToDevice);
- gpuMemcpy(d_in_n, in_n.data(), bytes, gpuMemcpyHostToDevice);
-
- Eigen::GpuStreamDevice stream;
- Eigen::GpuDevice gpu_device(&stream);
- Eigen::TensorMap<Eigen::Tensor<Scalar, 1> > gpu_in_x(d_in_x, 7);
- Eigen::TensorMap<Eigen::Tensor<Scalar, 1> > gpu_in_n(d_in_n, 7);
- Eigen::TensorMap<Eigen::Tensor<Scalar, 1> > gpu_out(d_out, 7);
- gpu_out.device(gpu_device) = gpu_in_n.polygamma(gpu_in_x);
- assert(gpuMemcpyAsync(out.data(), d_out, bytes, gpuMemcpyDeviceToHost, gpu_device.stream()) == gpuSuccess);
- assert(gpuStreamSynchronize(gpu_device.stream()) == gpuSuccess);
- for (int i = 0; i < 7; ++i) {
- VERIFY_IS_APPROX(out(i), expected_out(i));
- }
- gpuFree(d_in_x);
- gpuFree(d_in_n);
- gpuFree(d_out);
- }
- template <typename Scalar>
- void test_gpu_igamma()
- {
- Tensor<Scalar, 2> a(6, 6);
- Tensor<Scalar, 2> x(6, 6);
- Tensor<Scalar, 2> out(6, 6);
- out.setZero();
- Scalar a_s[] = {Scalar(0), Scalar(1), Scalar(1.5), Scalar(4), Scalar(0.0001), Scalar(1000.5)};
- Scalar x_s[] = {Scalar(0), Scalar(1), Scalar(1.5), Scalar(4), Scalar(0.0001), Scalar(1000.5)};
- for (int i = 0; i < 6; ++i) {
- for (int j = 0; j < 6; ++j) {
- a(i, j) = a_s[i];
- x(i, j) = x_s[j];
- }
- }
- Scalar nan = std::numeric_limits<Scalar>::quiet_NaN();
- Scalar igamma_s[][6] = {{0.0, nan, nan, nan, nan, nan},
- {0.0, 0.6321205588285578, 0.7768698398515702,
- 0.9816843611112658, 9.999500016666262e-05, 1.0},
- {0.0, 0.4275932955291202, 0.608374823728911,
- 0.9539882943107686, 7.522076445089201e-07, 1.0},
- {0.0, 0.01898815687615381, 0.06564245437845008,
- 0.5665298796332909, 4.166333347221828e-18, 1.0},
- {0.0, 0.9999780593618628, 0.9999899967080838,
- 0.9999996219837988, 0.9991370418689945, 1.0},
- {0.0, 0.0, 0.0, 0.0, 0.0, 0.5042041932513908}};
- std::size_t bytes = a.size() * sizeof(Scalar);
- Scalar* d_a;
- Scalar* d_x;
- Scalar* d_out;
- assert(gpuMalloc((void**)(&d_a), bytes) == gpuSuccess);
- assert(gpuMalloc((void**)(&d_x), bytes) == gpuSuccess);
- assert(gpuMalloc((void**)(&d_out), bytes) == gpuSuccess);
- gpuMemcpy(d_a, a.data(), bytes, gpuMemcpyHostToDevice);
- gpuMemcpy(d_x, x.data(), bytes, gpuMemcpyHostToDevice);
- Eigen::GpuStreamDevice stream;
- Eigen::GpuDevice gpu_device(&stream);
- Eigen::TensorMap<Eigen::Tensor<Scalar, 2> > gpu_a(d_a, 6, 6);
- Eigen::TensorMap<Eigen::Tensor<Scalar, 2> > gpu_x(d_x, 6, 6);
- Eigen::TensorMap<Eigen::Tensor<Scalar, 2> > gpu_out(d_out, 6, 6);
- gpu_out.device(gpu_device) = gpu_a.igamma(gpu_x);
- assert(gpuMemcpyAsync(out.data(), d_out, bytes, gpuMemcpyDeviceToHost, gpu_device.stream()) == gpuSuccess);
- assert(gpuStreamSynchronize(gpu_device.stream()) == gpuSuccess);
- for (int i = 0; i < 6; ++i) {
- for (int j = 0; j < 6; ++j) {
- if ((std::isnan)(igamma_s[i][j])) {
- VERIFY((std::isnan)(out(i, j)));
- } else {
- VERIFY_IS_APPROX(out(i, j), igamma_s[i][j]);
- }
- }
- }
- gpuFree(d_a);
- gpuFree(d_x);
- gpuFree(d_out);
- }
- template <typename Scalar>
- void test_gpu_igammac()
- {
- Tensor<Scalar, 2> a(6, 6);
- Tensor<Scalar, 2> x(6, 6);
- Tensor<Scalar, 2> out(6, 6);
- out.setZero();
- Scalar a_s[] = {Scalar(0), Scalar(1), Scalar(1.5), Scalar(4), Scalar(0.0001), Scalar(1000.5)};
- Scalar x_s[] = {Scalar(0), Scalar(1), Scalar(1.5), Scalar(4), Scalar(0.0001), Scalar(1000.5)};
- for (int i = 0; i < 6; ++i) {
- for (int j = 0; j < 6; ++j) {
- a(i, j) = a_s[i];
- x(i, j) = x_s[j];
- }
- }
- Scalar nan = std::numeric_limits<Scalar>::quiet_NaN();
- Scalar igammac_s[][6] = {{nan, nan, nan, nan, nan, nan},
- {1.0, 0.36787944117144233, 0.22313016014842982,
- 0.018315638888734182, 0.9999000049998333, 0.0},
- {1.0, 0.5724067044708798, 0.3916251762710878,
- 0.04601170568923136, 0.9999992477923555, 0.0},
- {1.0, 0.9810118431238462, 0.9343575456215499,
- 0.4334701203667089, 1.0, 0.0},
- {1.0, 2.1940638138146658e-05, 1.0003291916285e-05,
- 3.7801620118431334e-07, 0.0008629581310054535,
- 0.0},
- {1.0, 1.0, 1.0, 1.0, 1.0, 0.49579580674813944}};
- std::size_t bytes = a.size() * sizeof(Scalar);
- Scalar* d_a;
- Scalar* d_x;
- Scalar* d_out;
- gpuMalloc((void**)(&d_a), bytes);
- gpuMalloc((void**)(&d_x), bytes);
- gpuMalloc((void**)(&d_out), bytes);
- gpuMemcpy(d_a, a.data(), bytes, gpuMemcpyHostToDevice);
- gpuMemcpy(d_x, x.data(), bytes, gpuMemcpyHostToDevice);
- Eigen::GpuStreamDevice stream;
- Eigen::GpuDevice gpu_device(&stream);
- Eigen::TensorMap<Eigen::Tensor<Scalar, 2> > gpu_a(d_a, 6, 6);
- Eigen::TensorMap<Eigen::Tensor<Scalar, 2> > gpu_x(d_x, 6, 6);
- Eigen::TensorMap<Eigen::Tensor<Scalar, 2> > gpu_out(d_out, 6, 6);
- gpu_out.device(gpu_device) = gpu_a.igammac(gpu_x);
- assert(gpuMemcpyAsync(out.data(), d_out, bytes, gpuMemcpyDeviceToHost, gpu_device.stream()) == gpuSuccess);
- assert(gpuStreamSynchronize(gpu_device.stream()) == gpuSuccess);
- for (int i = 0; i < 6; ++i) {
- for (int j = 0; j < 6; ++j) {
- if ((std::isnan)(igammac_s[i][j])) {
- VERIFY((std::isnan)(out(i, j)));
- } else {
- VERIFY_IS_APPROX(out(i, j), igammac_s[i][j]);
- }
- }
- }
- gpuFree(d_a);
- gpuFree(d_x);
- gpuFree(d_out);
- }
- #if EIGEN_GPU_TEST_C99_MATH
- template <typename Scalar>
- void test_gpu_erf(const Scalar stddev)
- {
- Tensor<Scalar, 2> in(72,97);
- in.setRandom();
- in *= in.constant(stddev);
- Tensor<Scalar, 2> out(72,97);
- out.setZero();
- std::size_t bytes = in.size() * sizeof(Scalar);
- Scalar* d_in;
- Scalar* d_out;
- assert(gpuMalloc((void**)(&d_in), bytes) == gpuSuccess);
- assert(gpuMalloc((void**)(&d_out), bytes) == gpuSuccess);
- gpuMemcpy(d_in, in.data(), bytes, gpuMemcpyHostToDevice);
- Eigen::GpuStreamDevice stream;
- Eigen::GpuDevice gpu_device(&stream);
- Eigen::TensorMap<Eigen::Tensor<Scalar, 2> > gpu_in(d_in, 72, 97);
- Eigen::TensorMap<Eigen::Tensor<Scalar, 2> > gpu_out(d_out, 72, 97);
- gpu_out.device(gpu_device) = gpu_in.erf();
- assert(gpuMemcpyAsync(out.data(), d_out, bytes, gpuMemcpyDeviceToHost, gpu_device.stream()) == gpuSuccess);
- assert(gpuStreamSynchronize(gpu_device.stream()) == gpuSuccess);
- for (int i = 0; i < 72; ++i) {
- for (int j = 0; j < 97; ++j) {
- VERIFY_IS_APPROX(out(i,j), (std::erf)(in(i,j)));
- }
- }
- gpuFree(d_in);
- gpuFree(d_out);
- }
- template <typename Scalar>
- void test_gpu_erfc(const Scalar stddev)
- {
- Tensor<Scalar, 2> in(72,97);
- in.setRandom();
- in *= in.constant(stddev);
- Tensor<Scalar, 2> out(72,97);
- out.setZero();
- std::size_t bytes = in.size() * sizeof(Scalar);
- Scalar* d_in;
- Scalar* d_out;
- gpuMalloc((void**)(&d_in), bytes);
- gpuMalloc((void**)(&d_out), bytes);
- gpuMemcpy(d_in, in.data(), bytes, gpuMemcpyHostToDevice);
- Eigen::GpuStreamDevice stream;
- Eigen::GpuDevice gpu_device(&stream);
- Eigen::TensorMap<Eigen::Tensor<Scalar, 2> > gpu_in(d_in, 72, 97);
- Eigen::TensorMap<Eigen::Tensor<Scalar, 2> > gpu_out(d_out, 72, 97);
- gpu_out.device(gpu_device) = gpu_in.erfc();
- assert(gpuMemcpyAsync(out.data(), d_out, bytes, gpuMemcpyDeviceToHost, gpu_device.stream()) == gpuSuccess);
- assert(gpuStreamSynchronize(gpu_device.stream()) == gpuSuccess);
- for (int i = 0; i < 72; ++i) {
- for (int j = 0; j < 97; ++j) {
- VERIFY_IS_APPROX(out(i,j), (std::erfc)(in(i,j)));
- }
- }
- gpuFree(d_in);
- gpuFree(d_out);
- }
- #endif
- template <typename Scalar>
- void test_gpu_ndtri()
- {
- Tensor<Scalar, 1> in_x(8);
- Tensor<Scalar, 1> out(8);
- Tensor<Scalar, 1> expected_out(8);
- out.setZero();
- in_x(0) = Scalar(1);
- in_x(1) = Scalar(0.);
- in_x(2) = Scalar(0.5);
- in_x(3) = Scalar(0.2);
- in_x(4) = Scalar(0.8);
- in_x(5) = Scalar(0.9);
- in_x(6) = Scalar(0.1);
- in_x(7) = Scalar(0.99);
- in_x(8) = Scalar(0.01);
- expected_out(0) = std::numeric_limits<Scalar>::infinity();
- expected_out(1) = -std::numeric_limits<Scalar>::infinity();
- expected_out(2) = Scalar(0.0);
- expected_out(3) = Scalar(-0.8416212335729142);
- expected_out(4) = Scalar(0.8416212335729142);
- expected_out(5) = Scalar(1.2815515655446004);
- expected_out(6) = Scalar(-1.2815515655446004);
- expected_out(7) = Scalar(2.3263478740408408);
- expected_out(8) = Scalar(-2.3263478740408408);
- std::size_t bytes = in_x.size() * sizeof(Scalar);
- Scalar* d_in_x;
- Scalar* d_out;
- gpuMalloc((void**)(&d_in_x), bytes);
- gpuMalloc((void**)(&d_out), bytes);
- gpuMemcpy(d_in_x, in_x.data(), bytes, gpuMemcpyHostToDevice);
- Eigen::GpuStreamDevice stream;
- Eigen::GpuDevice gpu_device(&stream);
- Eigen::TensorMap<Eigen::Tensor<Scalar, 1> > gpu_in_x(d_in_x, 6);
- Eigen::TensorMap<Eigen::Tensor<Scalar, 1> > gpu_out(d_out, 6);
- gpu_out.device(gpu_device) = gpu_in_x.ndtri();
- assert(gpuMemcpyAsync(out.data(), d_out, bytes, gpuMemcpyDeviceToHost, gpu_device.stream()) == gpuSuccess);
- assert(gpuStreamSynchronize(gpu_device.stream()) == gpuSuccess);
- VERIFY_IS_EQUAL(out(0), expected_out(0));
- VERIFY((std::isnan)(out(3)));
- for (int i = 1; i < 6; ++i) {
- if (i != 3) {
- VERIFY_IS_APPROX(out(i), expected_out(i));
- }
- }
- gpuFree(d_in_x);
- gpuFree(d_out);
- }
- template <typename Scalar>
- void test_gpu_betainc()
- {
- Tensor<Scalar, 1> in_x(125);
- Tensor<Scalar, 1> in_a(125);
- Tensor<Scalar, 1> in_b(125);
- Tensor<Scalar, 1> out(125);
- Tensor<Scalar, 1> expected_out(125);
- out.setZero();
- Scalar nan = std::numeric_limits<Scalar>::quiet_NaN();
- Array<Scalar, 1, Dynamic> x(125);
- Array<Scalar, 1, Dynamic> a(125);
- Array<Scalar, 1, Dynamic> b(125);
- Array<Scalar, 1, Dynamic> v(125);
- a << 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
- 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
- 0.03062277660168379, 0.03062277660168379, 0.03062277660168379,
- 0.03062277660168379, 0.03062277660168379, 0.03062277660168379,
- 0.03062277660168379, 0.03062277660168379, 0.03062277660168379,
- 0.03062277660168379, 0.03062277660168379, 0.03062277660168379,
- 0.03062277660168379, 0.03062277660168379, 0.03062277660168379,
- 0.03062277660168379, 0.03062277660168379, 0.03062277660168379,
- 0.03062277660168379, 0.03062277660168379, 0.03062277660168379,
- 0.03062277660168379, 0.03062277660168379, 0.03062277660168379,
- 0.03062277660168379, 0.999, 0.999, 0.999, 0.999, 0.999, 0.999, 0.999,
- 0.999, 0.999, 0.999, 0.999, 0.999, 0.999, 0.999, 0.999, 0.999, 0.999,
- 0.999, 0.999, 0.999, 0.999, 0.999, 0.999, 0.999, 0.999, 31.62177660168379,
- 31.62177660168379, 31.62177660168379, 31.62177660168379,
- 31.62177660168379, 31.62177660168379, 31.62177660168379,
- 31.62177660168379, 31.62177660168379, 31.62177660168379,
- 31.62177660168379, 31.62177660168379, 31.62177660168379,
- 31.62177660168379, 31.62177660168379, 31.62177660168379,
- 31.62177660168379, 31.62177660168379, 31.62177660168379,
- 31.62177660168379, 31.62177660168379, 31.62177660168379,
- 31.62177660168379, 31.62177660168379, 31.62177660168379, 999.999, 999.999,
- 999.999, 999.999, 999.999, 999.999, 999.999, 999.999, 999.999, 999.999,
- 999.999, 999.999, 999.999, 999.999, 999.999, 999.999, 999.999, 999.999,
- 999.999, 999.999, 999.999, 999.999, 999.999, 999.999, 999.999;
- b << 0.0, 0.0, 0.0, 0.0, 0.0, 0.03062277660168379, 0.03062277660168379,
- 0.03062277660168379, 0.03062277660168379, 0.03062277660168379, 0.999,
- 0.999, 0.999, 0.999, 0.999, 31.62177660168379, 31.62177660168379,
- 31.62177660168379, 31.62177660168379, 31.62177660168379, 999.999, 999.999,
- 999.999, 999.999, 999.999, 0.0, 0.0, 0.0, 0.0, 0.0, 0.03062277660168379,
- 0.03062277660168379, 0.03062277660168379, 0.03062277660168379,
- 0.03062277660168379, 0.999, 0.999, 0.999, 0.999, 0.999, 31.62177660168379,
- 31.62177660168379, 31.62177660168379, 31.62177660168379,
- 31.62177660168379, 999.999, 999.999, 999.999, 999.999, 999.999, 0.0, 0.0,
- 0.0, 0.0, 0.0, 0.03062277660168379, 0.03062277660168379,
- 0.03062277660168379, 0.03062277660168379, 0.03062277660168379, 0.999,
- 0.999, 0.999, 0.999, 0.999, 31.62177660168379, 31.62177660168379,
- 31.62177660168379, 31.62177660168379, 31.62177660168379, 999.999, 999.999,
- 999.999, 999.999, 999.999, 0.0, 0.0, 0.0, 0.0, 0.0, 0.03062277660168379,
- 0.03062277660168379, 0.03062277660168379, 0.03062277660168379,
- 0.03062277660168379, 0.999, 0.999, 0.999, 0.999, 0.999, 31.62177660168379,
- 31.62177660168379, 31.62177660168379, 31.62177660168379,
- 31.62177660168379, 999.999, 999.999, 999.999, 999.999, 999.999, 0.0, 0.0,
- 0.0, 0.0, 0.0, 0.03062277660168379, 0.03062277660168379,
- 0.03062277660168379, 0.03062277660168379, 0.03062277660168379, 0.999,
- 0.999, 0.999, 0.999, 0.999, 31.62177660168379, 31.62177660168379,
- 31.62177660168379, 31.62177660168379, 31.62177660168379, 999.999, 999.999,
- 999.999, 999.999, 999.999;
- x << -0.1, 0.2, 0.5, 0.8, 1.1, -0.1, 0.2, 0.5, 0.8, 1.1, -0.1, 0.2, 0.5, 0.8,
- 1.1, -0.1, 0.2, 0.5, 0.8, 1.1, -0.1, 0.2, 0.5, 0.8, 1.1, -0.1, 0.2, 0.5,
- 0.8, 1.1, -0.1, 0.2, 0.5, 0.8, 1.1, -0.1, 0.2, 0.5, 0.8, 1.1, -0.1, 0.2,
- 0.5, 0.8, 1.1, -0.1, 0.2, 0.5, 0.8, 1.1, -0.1, 0.2, 0.5, 0.8, 1.1, -0.1,
- 0.2, 0.5, 0.8, 1.1, -0.1, 0.2, 0.5, 0.8, 1.1, -0.1, 0.2, 0.5, 0.8, 1.1,
- -0.1, 0.2, 0.5, 0.8, 1.1, -0.1, 0.2, 0.5, 0.8, 1.1, -0.1, 0.2, 0.5, 0.8,
- 1.1, -0.1, 0.2, 0.5, 0.8, 1.1, -0.1, 0.2, 0.5, 0.8, 1.1, -0.1, 0.2, 0.5,
- 0.8, 1.1, -0.1, 0.2, 0.5, 0.8, 1.1, -0.1, 0.2, 0.5, 0.8, 1.1, -0.1, 0.2,
- 0.5, 0.8, 1.1, -0.1, 0.2, 0.5, 0.8, 1.1, -0.1, 0.2, 0.5, 0.8, 1.1;
- v << nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan,
- nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan,
- nan, nan, 0.47972119876364683, 0.5, 0.5202788012363533, nan, nan,
- 0.9518683957740043, 0.9789663010413743, 0.9931729188073435, nan, nan,
- 0.999995949033062, 0.9999999999993698, 0.9999999999999999, nan, nan,
- 0.9999999999999999, 0.9999999999999999, 0.9999999999999999, nan, nan, nan,
- nan, nan, nan, nan, 0.006827081192655869, 0.0210336989586256,
- 0.04813160422599567, nan, nan, 0.20014344256217678, 0.5000000000000001,
- 0.7998565574378232, nan, nan, 0.9991401428435834, 0.999999999698403,
- 0.9999999999999999, nan, nan, 0.9999999999999999, 0.9999999999999999,
- 0.9999999999999999, nan, nan, nan, nan, nan, nan, nan,
- 1.0646600232370887e-25, 6.301722877826246e-13, 4.050966937974938e-06, nan,
- nan, 7.864342668429763e-23, 3.015969667594166e-10, 0.0008598571564165444,
- nan, nan, 6.031987710123844e-08, 0.5000000000000007, 0.9999999396801229,
- nan, nan, 0.9999999999999999, 0.9999999999999999, 0.9999999999999999, nan,
- nan, nan, nan, nan, nan, nan, 0.0, 7.029920380986636e-306,
- 2.2450728208591345e-101, nan, nan, 0.0, 9.275871147869727e-302,
- 1.2232913026152827e-97, nan, nan, 0.0, 3.0891393081932924e-252,
- 2.9303043666183996e-60, nan, nan, 2.248913486879199e-196,
- 0.5000000000004947, 0.9999999999999999, nan;
- for (int i = 0; i < 125; ++i) {
- in_x(i) = x(i);
- in_a(i) = a(i);
- in_b(i) = b(i);
- expected_out(i) = v(i);
- }
- std::size_t bytes = in_x.size() * sizeof(Scalar);
- Scalar* d_in_x;
- Scalar* d_in_a;
- Scalar* d_in_b;
- Scalar* d_out;
- gpuMalloc((void**)(&d_in_x), bytes);
- gpuMalloc((void**)(&d_in_a), bytes);
- gpuMalloc((void**)(&d_in_b), bytes);
- gpuMalloc((void**)(&d_out), bytes);
- gpuMemcpy(d_in_x, in_x.data(), bytes, gpuMemcpyHostToDevice);
- gpuMemcpy(d_in_a, in_a.data(), bytes, gpuMemcpyHostToDevice);
- gpuMemcpy(d_in_b, in_b.data(), bytes, gpuMemcpyHostToDevice);
- Eigen::GpuStreamDevice stream;
- Eigen::GpuDevice gpu_device(&stream);
- Eigen::TensorMap<Eigen::Tensor<Scalar, 1> > gpu_in_x(d_in_x, 125);
- Eigen::TensorMap<Eigen::Tensor<Scalar, 1> > gpu_in_a(d_in_a, 125);
- Eigen::TensorMap<Eigen::Tensor<Scalar, 1> > gpu_in_b(d_in_b, 125);
- Eigen::TensorMap<Eigen::Tensor<Scalar, 1> > gpu_out(d_out, 125);
- gpu_out.device(gpu_device) = betainc(gpu_in_a, gpu_in_b, gpu_in_x);
- assert(gpuMemcpyAsync(out.data(), d_out, bytes, gpuMemcpyDeviceToHost, gpu_device.stream()) == gpuSuccess);
- assert(gpuStreamSynchronize(gpu_device.stream()) == gpuSuccess);
- for (int i = 1; i < 125; ++i) {
- if ((std::isnan)(expected_out(i))) {
- VERIFY((std::isnan)(out(i)));
- } else {
- VERIFY_IS_APPROX(out(i), expected_out(i));
- }
- }
- gpuFree(d_in_x);
- gpuFree(d_in_a);
- gpuFree(d_in_b);
- gpuFree(d_out);
- }
- template <typename Scalar>
- void test_gpu_i0e()
- {
- Tensor<Scalar, 1> in_x(21);
- Tensor<Scalar, 1> out(21);
- Tensor<Scalar, 1> expected_out(21);
- out.setZero();
- Array<Scalar, 1, Dynamic> in_x_array(21);
- Array<Scalar, 1, Dynamic> expected_out_array(21);
- in_x_array << -20.0, -18.0, -16.0, -14.0, -12.0, -10.0, -8.0, -6.0, -4.0,
- -2.0, 0.0, 2.0, 4.0, 6.0, 8.0, 10.0, 12.0, 14.0, 16.0, 18.0, 20.0;
- expected_out_array << 0.0897803118848, 0.0947062952128, 0.100544127361,
- 0.107615251671, 0.116426221213, 0.127833337163, 0.143431781857,
- 0.16665743264, 0.207001921224, 0.308508322554, 1.0, 0.308508322554,
- 0.207001921224, 0.16665743264, 0.143431781857, 0.127833337163,
- 0.116426221213, 0.107615251671, 0.100544127361, 0.0947062952128,
- 0.0897803118848;
- for (int i = 0; i < 21; ++i) {
- in_x(i) = in_x_array(i);
- expected_out(i) = expected_out_array(i);
- }
- std::size_t bytes = in_x.size() * sizeof(Scalar);
- Scalar* d_in;
- Scalar* d_out;
- gpuMalloc((void**)(&d_in), bytes);
- gpuMalloc((void**)(&d_out), bytes);
- gpuMemcpy(d_in, in_x.data(), bytes, gpuMemcpyHostToDevice);
- Eigen::GpuStreamDevice stream;
- Eigen::GpuDevice gpu_device(&stream);
- Eigen::TensorMap<Eigen::Tensor<Scalar, 1> > gpu_in(d_in, 21);
- Eigen::TensorMap<Eigen::Tensor<Scalar, 1> > gpu_out(d_out, 21);
- gpu_out.device(gpu_device) = gpu_in.bessel_i0e();
- assert(gpuMemcpyAsync(out.data(), d_out, bytes, gpuMemcpyDeviceToHost,
- gpu_device.stream()) == gpuSuccess);
- assert(gpuStreamSynchronize(gpu_device.stream()) == gpuSuccess);
- for (int i = 0; i < 21; ++i) {
- VERIFY_IS_APPROX(out(i), expected_out(i));
- }
- gpuFree(d_in);
- gpuFree(d_out);
- }
- template <typename Scalar>
- void test_gpu_i1e()
- {
- Tensor<Scalar, 1> in_x(21);
- Tensor<Scalar, 1> out(21);
- Tensor<Scalar, 1> expected_out(21);
- out.setZero();
- Array<Scalar, 1, Dynamic> in_x_array(21);
- Array<Scalar, 1, Dynamic> expected_out_array(21);
- in_x_array << -20.0, -18.0, -16.0, -14.0, -12.0, -10.0, -8.0, -6.0, -4.0,
- -2.0, 0.0, 2.0, 4.0, 6.0, 8.0, 10.0, 12.0, 14.0, 16.0, 18.0, 20.0;
- expected_out_array << -0.0875062221833, -0.092036796872, -0.0973496147565,
- -0.103697667463, -0.11146429929, -0.121262681384, -0.134142493293,
- -0.152051459309, -0.178750839502, -0.215269289249, 0.0, 0.215269289249,
- 0.178750839502, 0.152051459309, 0.134142493293, 0.121262681384,
- 0.11146429929, 0.103697667463, 0.0973496147565, 0.092036796872,
- 0.0875062221833;
- for (int i = 0; i < 21; ++i) {
- in_x(i) = in_x_array(i);
- expected_out(i) = expected_out_array(i);
- }
- std::size_t bytes = in_x.size() * sizeof(Scalar);
- Scalar* d_in;
- Scalar* d_out;
- gpuMalloc((void**)(&d_in), bytes);
- gpuMalloc((void**)(&d_out), bytes);
- gpuMemcpy(d_in, in_x.data(), bytes, gpuMemcpyHostToDevice);
- Eigen::GpuStreamDevice stream;
- Eigen::GpuDevice gpu_device(&stream);
- Eigen::TensorMap<Eigen::Tensor<Scalar, 1> > gpu_in(d_in, 21);
- Eigen::TensorMap<Eigen::Tensor<Scalar, 1> > gpu_out(d_out, 21);
- gpu_out.device(gpu_device) = gpu_in.bessel_i1e();
- assert(gpuMemcpyAsync(out.data(), d_out, bytes, gpuMemcpyDeviceToHost,
- gpu_device.stream()) == gpuSuccess);
- assert(gpuStreamSynchronize(gpu_device.stream()) == gpuSuccess);
- for (int i = 0; i < 21; ++i) {
- VERIFY_IS_APPROX(out(i), expected_out(i));
- }
- gpuFree(d_in);
- gpuFree(d_out);
- }
- template <typename Scalar>
- void test_gpu_igamma_der_a()
- {
- Tensor<Scalar, 1> in_x(30);
- Tensor<Scalar, 1> in_a(30);
- Tensor<Scalar, 1> out(30);
- Tensor<Scalar, 1> expected_out(30);
- out.setZero();
- Array<Scalar, 1, Dynamic> in_a_array(30);
- Array<Scalar, 1, Dynamic> in_x_array(30);
- Array<Scalar, 1, Dynamic> expected_out_array(30);
- // See special_functions.cpp for the Python code that generates the test data.
- in_a_array << 0.01, 0.01, 0.01, 0.01, 0.01, 0.1, 0.1, 0.1, 0.1, 0.1, 1.0, 1.0,
- 1.0, 1.0, 1.0, 10.0, 10.0, 10.0, 10.0, 10.0, 100.0, 100.0, 100.0, 100.0,
- 100.0, 1000.0, 1000.0, 1000.0, 1000.0, 1000.0;
- in_x_array << 1.25668890405e-26, 1.17549435082e-38, 1.20938905072e-05,
- 1.17549435082e-38, 1.17549435082e-38, 5.66572070696e-16, 0.0132865061065,
- 0.0200034203853, 6.29263709118e-17, 1.37160367764e-06, 0.333412038288,
- 1.18135687766, 0.580629033777, 0.170631439426, 0.786686768458,
- 7.63873279537, 13.1944344379, 11.896042354, 10.5830172417, 10.5020942233,
- 92.8918587747, 95.003720371, 86.3715926467, 96.0330217672, 82.6389930677,
- 968.702906754, 969.463546828, 1001.79726022, 955.047416547, 1044.27458568;
- expected_out_array << -32.7256441441, -36.4394150514, -9.66467612263,
- -36.4394150514, -36.4394150514, -1.0891900302, -2.66351229645,
- -2.48666868596, -0.929700494428, -3.56327722764, -0.455320135314,
- -0.391437214323, -0.491352055991, -0.350454834292, -0.471773162921,
- -0.104084440522, -0.0723646747909, -0.0992828975532, -0.121638215446,
- -0.122619605294, -0.0317670267286, -0.0359974812869, -0.0154359225363,
- -0.0375775365921, -0.00794899153653, -0.00777303219211, -0.00796085782042,
- -0.0125850719397, -0.00455500206958, -0.00476436993148;
- for (int i = 0; i < 30; ++i) {
- in_x(i) = in_x_array(i);
- in_a(i) = in_a_array(i);
- expected_out(i) = expected_out_array(i);
- }
- std::size_t bytes = in_x.size() * sizeof(Scalar);
- Scalar* d_a;
- Scalar* d_x;
- Scalar* d_out;
- gpuMalloc((void**)(&d_a), bytes);
- gpuMalloc((void**)(&d_x), bytes);
- gpuMalloc((void**)(&d_out), bytes);
- gpuMemcpy(d_a, in_a.data(), bytes, gpuMemcpyHostToDevice);
- gpuMemcpy(d_x, in_x.data(), bytes, gpuMemcpyHostToDevice);
- Eigen::GpuStreamDevice stream;
- Eigen::GpuDevice gpu_device(&stream);
- Eigen::TensorMap<Eigen::Tensor<Scalar, 1> > gpu_a(d_a, 30);
- Eigen::TensorMap<Eigen::Tensor<Scalar, 1> > gpu_x(d_x, 30);
- Eigen::TensorMap<Eigen::Tensor<Scalar, 1> > gpu_out(d_out, 30);
- gpu_out.device(gpu_device) = gpu_a.igamma_der_a(gpu_x);
- assert(gpuMemcpyAsync(out.data(), d_out, bytes, gpuMemcpyDeviceToHost,
- gpu_device.stream()) == gpuSuccess);
- assert(gpuStreamSynchronize(gpu_device.stream()) == gpuSuccess);
- for (int i = 0; i < 30; ++i) {
- VERIFY_IS_APPROX(out(i), expected_out(i));
- }
- gpuFree(d_a);
- gpuFree(d_x);
- gpuFree(d_out);
- }
- template <typename Scalar>
- void test_gpu_gamma_sample_der_alpha()
- {
- Tensor<Scalar, 1> in_alpha(30);
- Tensor<Scalar, 1> in_sample(30);
- Tensor<Scalar, 1> out(30);
- Tensor<Scalar, 1> expected_out(30);
- out.setZero();
- Array<Scalar, 1, Dynamic> in_alpha_array(30);
- Array<Scalar, 1, Dynamic> in_sample_array(30);
- Array<Scalar, 1, Dynamic> expected_out_array(30);
- // See special_functions.cpp for the Python code that generates the test data.
- in_alpha_array << 0.01, 0.01, 0.01, 0.01, 0.01, 0.1, 0.1, 0.1, 0.1, 0.1, 1.0,
- 1.0, 1.0, 1.0, 1.0, 10.0, 10.0, 10.0, 10.0, 10.0, 100.0, 100.0, 100.0,
- 100.0, 100.0, 1000.0, 1000.0, 1000.0, 1000.0, 1000.0;
- in_sample_array << 1.25668890405e-26, 1.17549435082e-38, 1.20938905072e-05,
- 1.17549435082e-38, 1.17549435082e-38, 5.66572070696e-16, 0.0132865061065,
- 0.0200034203853, 6.29263709118e-17, 1.37160367764e-06, 0.333412038288,
- 1.18135687766, 0.580629033777, 0.170631439426, 0.786686768458,
- 7.63873279537, 13.1944344379, 11.896042354, 10.5830172417, 10.5020942233,
- 92.8918587747, 95.003720371, 86.3715926467, 96.0330217672, 82.6389930677,
- 968.702906754, 969.463546828, 1001.79726022, 955.047416547, 1044.27458568;
- expected_out_array << 7.42424742367e-23, 1.02004297287e-34, 0.0130155240738,
- 1.02004297287e-34, 1.02004297287e-34, 1.96505168277e-13, 0.525575786243,
- 0.713903991771, 2.32077561808e-14, 0.000179348049886, 0.635500453302,
- 1.27561284917, 0.878125852156, 0.41565819538, 1.03606488534,
- 0.885964824887, 1.16424049334, 1.10764479598, 1.04590810812,
- 1.04193666963, 0.965193152414, 0.976217589464, 0.93008035061,
- 0.98153216096, 0.909196397698, 0.98434963993, 0.984738050206,
- 1.00106492525, 0.97734200649, 1.02198794179;
- for (int i = 0; i < 30; ++i) {
- in_alpha(i) = in_alpha_array(i);
- in_sample(i) = in_sample_array(i);
- expected_out(i) = expected_out_array(i);
- }
- std::size_t bytes = in_alpha.size() * sizeof(Scalar);
- Scalar* d_alpha;
- Scalar* d_sample;
- Scalar* d_out;
- gpuMalloc((void**)(&d_alpha), bytes);
- gpuMalloc((void**)(&d_sample), bytes);
- gpuMalloc((void**)(&d_out), bytes);
- gpuMemcpy(d_alpha, in_alpha.data(), bytes, gpuMemcpyHostToDevice);
- gpuMemcpy(d_sample, in_sample.data(), bytes, gpuMemcpyHostToDevice);
- Eigen::GpuStreamDevice stream;
- Eigen::GpuDevice gpu_device(&stream);
- Eigen::TensorMap<Eigen::Tensor<Scalar, 1> > gpu_alpha(d_alpha, 30);
- Eigen::TensorMap<Eigen::Tensor<Scalar, 1> > gpu_sample(d_sample, 30);
- Eigen::TensorMap<Eigen::Tensor<Scalar, 1> > gpu_out(d_out, 30);
- gpu_out.device(gpu_device) = gpu_alpha.gamma_sample_der_alpha(gpu_sample);
- assert(gpuMemcpyAsync(out.data(), d_out, bytes, gpuMemcpyDeviceToHost,
- gpu_device.stream()) == gpuSuccess);
- assert(gpuStreamSynchronize(gpu_device.stream()) == gpuSuccess);
- for (int i = 0; i < 30; ++i) {
- VERIFY_IS_APPROX(out(i), expected_out(i));
- }
- gpuFree(d_alpha);
- gpuFree(d_sample);
- gpuFree(d_out);
- }
- EIGEN_DECLARE_TEST(cxx11_tensor_gpu)
- {
- CALL_SUBTEST_1(test_gpu_nullary());
- CALL_SUBTEST_1(test_gpu_elementwise_small());
- CALL_SUBTEST_1(test_gpu_elementwise());
- CALL_SUBTEST_1(test_gpu_props());
- CALL_SUBTEST_1(test_gpu_reduction());
- CALL_SUBTEST_2(test_gpu_contraction<ColMajor>());
- CALL_SUBTEST_2(test_gpu_contraction<RowMajor>());
- CALL_SUBTEST_3(test_gpu_convolution_1d<ColMajor>());
- CALL_SUBTEST_3(test_gpu_convolution_1d<RowMajor>());
- CALL_SUBTEST_3(test_gpu_convolution_inner_dim_col_major_1d());
- CALL_SUBTEST_3(test_gpu_convolution_inner_dim_row_major_1d());
- CALL_SUBTEST_3(test_gpu_convolution_2d<ColMajor>());
- CALL_SUBTEST_3(test_gpu_convolution_2d<RowMajor>());
- #if !defined(EIGEN_USE_HIP)
- // disable these tests on HIP for now.
- // they hang..need to investigate and fix
- CALL_SUBTEST_3(test_gpu_convolution_3d<ColMajor>());
- CALL_SUBTEST_3(test_gpu_convolution_3d<RowMajor>());
- #endif
- #if EIGEN_GPU_TEST_C99_MATH
- // std::erf, std::erfc, and so on where only added in c++11. We use them
- // as a golden reference to validate the results produced by Eigen. Therefore
- // we can only run these tests if we use a c++11 compiler.
- CALL_SUBTEST_4(test_gpu_lgamma<float>(1.0f));
- CALL_SUBTEST_4(test_gpu_lgamma<float>(100.0f));
- CALL_SUBTEST_4(test_gpu_lgamma<float>(0.01f));
- CALL_SUBTEST_4(test_gpu_lgamma<float>(0.001f));
- CALL_SUBTEST_4(test_gpu_lgamma<double>(1.0));
- CALL_SUBTEST_4(test_gpu_lgamma<double>(100.0));
- CALL_SUBTEST_4(test_gpu_lgamma<double>(0.01));
- CALL_SUBTEST_4(test_gpu_lgamma<double>(0.001));
- CALL_SUBTEST_4(test_gpu_erf<float>(1.0f));
- CALL_SUBTEST_4(test_gpu_erf<float>(100.0f));
- CALL_SUBTEST_4(test_gpu_erf<float>(0.01f));
- CALL_SUBTEST_4(test_gpu_erf<float>(0.001f));
- CALL_SUBTEST_4(test_gpu_erfc<float>(1.0f));
- // CALL_SUBTEST(test_gpu_erfc<float>(100.0f));
- CALL_SUBTEST_4(test_gpu_erfc<float>(5.0f)); // GPU erfc lacks precision for large inputs
- CALL_SUBTEST_4(test_gpu_erfc<float>(0.01f));
- CALL_SUBTEST_4(test_gpu_erfc<float>(0.001f));
- CALL_SUBTEST_4(test_gpu_erf<double>(1.0));
- CALL_SUBTEST_4(test_gpu_erf<double>(100.0));
- CALL_SUBTEST_4(test_gpu_erf<double>(0.01));
- CALL_SUBTEST_4(test_gpu_erf<double>(0.001));
- CALL_SUBTEST_4(test_gpu_erfc<double>(1.0));
- // CALL_SUBTEST(test_gpu_erfc<double>(100.0));
- CALL_SUBTEST_4(test_gpu_erfc<double>(5.0)); // GPU erfc lacks precision for large inputs
- CALL_SUBTEST_4(test_gpu_erfc<double>(0.01));
- CALL_SUBTEST_4(test_gpu_erfc<double>(0.001));
- #if !defined(EIGEN_USE_HIP)
- // disable these tests on HIP for now.
- CALL_SUBTEST_5(test_gpu_ndtri<float>());
- CALL_SUBTEST_5(test_gpu_ndtri<double>());
- CALL_SUBTEST_5(test_gpu_digamma<float>());
- CALL_SUBTEST_5(test_gpu_digamma<double>());
- CALL_SUBTEST_5(test_gpu_polygamma<float>());
- CALL_SUBTEST_5(test_gpu_polygamma<double>());
- CALL_SUBTEST_5(test_gpu_zeta<float>());
- CALL_SUBTEST_5(test_gpu_zeta<double>());
- #endif
- CALL_SUBTEST_5(test_gpu_igamma<float>());
- CALL_SUBTEST_5(test_gpu_igammac<float>());
- CALL_SUBTEST_5(test_gpu_igamma<double>());
- CALL_SUBTEST_5(test_gpu_igammac<double>());
- #if !defined(EIGEN_USE_HIP)
- // disable these tests on HIP for now.
- CALL_SUBTEST_6(test_gpu_betainc<float>());
- CALL_SUBTEST_6(test_gpu_betainc<double>());
- CALL_SUBTEST_6(test_gpu_i0e<float>());
- CALL_SUBTEST_6(test_gpu_i0e<double>());
- CALL_SUBTEST_6(test_gpu_i1e<float>());
- CALL_SUBTEST_6(test_gpu_i1e<double>());
- CALL_SUBTEST_6(test_gpu_i1e<float>());
- CALL_SUBTEST_6(test_gpu_i1e<double>());
- CALL_SUBTEST_6(test_gpu_igamma_der_a<float>());
- CALL_SUBTEST_6(test_gpu_igamma_der_a<double>());
- CALL_SUBTEST_6(test_gpu_gamma_sample_der_alpha<float>());
- CALL_SUBTEST_6(test_gpu_gamma_sample_der_alpha<double>());
- #endif
- #endif
- }
|