123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464 |
- // This file is part of Eigen, a lightweight C++ template library
- // for linear algebra.
- //
- // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
- //
- // This Source Code Form is subject to the terms of the Mozilla
- // Public License v. 2.0. If a copy of the MPL was not distributed
- // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
- #include <numeric>
- #include "main.h"
- #include <Eigen/CXX11/Tensor>
- using Eigen::Tensor;
- using Eigen::RowMajor;
- static void test_1d()
- {
- Tensor<float, 1> vec1(6);
- Tensor<float, 1, RowMajor> vec2(6);
- vec1(0) = 4.0; vec2(0) = 0.0;
- vec1(1) = 8.0; vec2(1) = 1.0;
- vec1(2) = 15.0; vec2(2) = 2.0;
- vec1(3) = 16.0; vec2(3) = 3.0;
- vec1(4) = 23.0; vec2(4) = 4.0;
- vec1(5) = 42.0; vec2(5) = 5.0;
- float data3[6];
- TensorMap<Tensor<float, 1>> vec3(data3, 6);
- vec3 = vec1.sqrt();
- float data4[6];
- TensorMap<Tensor<float, 1, RowMajor>> vec4(data4, 6);
- vec4 = vec2.square();
- float data5[6];
- TensorMap<Tensor<float, 1, RowMajor>> vec5(data5, 6);
- vec5 = vec2.cube();
- VERIFY_IS_APPROX(vec3(0), sqrtf(4.0));
- VERIFY_IS_APPROX(vec3(1), sqrtf(8.0));
- VERIFY_IS_APPROX(vec3(2), sqrtf(15.0));
- VERIFY_IS_APPROX(vec3(3), sqrtf(16.0));
- VERIFY_IS_APPROX(vec3(4), sqrtf(23.0));
- VERIFY_IS_APPROX(vec3(5), sqrtf(42.0));
- VERIFY_IS_APPROX(vec4(0), 0.0f);
- VERIFY_IS_APPROX(vec4(1), 1.0f);
- VERIFY_IS_APPROX(vec4(2), 2.0f * 2.0f);
- VERIFY_IS_APPROX(vec4(3), 3.0f * 3.0f);
- VERIFY_IS_APPROX(vec4(4), 4.0f * 4.0f);
- VERIFY_IS_APPROX(vec4(5), 5.0f * 5.0f);
- VERIFY_IS_APPROX(vec5(0), 0.0f);
- VERIFY_IS_APPROX(vec5(1), 1.0f);
- VERIFY_IS_APPROX(vec5(2), 2.0f * 2.0f * 2.0f);
- VERIFY_IS_APPROX(vec5(3), 3.0f * 3.0f * 3.0f);
- VERIFY_IS_APPROX(vec5(4), 4.0f * 4.0f * 4.0f);
- VERIFY_IS_APPROX(vec5(5), 5.0f * 5.0f * 5.0f);
- vec3 = vec1 + vec2;
- VERIFY_IS_APPROX(vec3(0), 4.0f + 0.0f);
- VERIFY_IS_APPROX(vec3(1), 8.0f + 1.0f);
- VERIFY_IS_APPROX(vec3(2), 15.0f + 2.0f);
- VERIFY_IS_APPROX(vec3(3), 16.0f + 3.0f);
- VERIFY_IS_APPROX(vec3(4), 23.0f + 4.0f);
- VERIFY_IS_APPROX(vec3(5), 42.0f + 5.0f);
- }
- static void test_2d()
- {
- float data1[6];
- TensorMap<Tensor<float, 2>> mat1(data1, 2, 3);
- float data2[6];
- TensorMap<Tensor<float, 2, RowMajor>> mat2(data2, 2, 3);
- mat1(0,0) = 0.0;
- mat1(0,1) = 1.0;
- mat1(0,2) = 2.0;
- mat1(1,0) = 3.0;
- mat1(1,1) = 4.0;
- mat1(1,2) = 5.0;
- mat2(0,0) = -0.0;
- mat2(0,1) = -1.0;
- mat2(0,2) = -2.0;
- mat2(1,0) = -3.0;
- mat2(1,1) = -4.0;
- mat2(1,2) = -5.0;
- Tensor<float, 2> mat3(2,3);
- Tensor<float, 2, RowMajor> mat4(2,3);
- mat3 = mat1.abs();
- mat4 = mat2.abs();
- VERIFY_IS_APPROX(mat3(0,0), 0.0f);
- VERIFY_IS_APPROX(mat3(0,1), 1.0f);
- VERIFY_IS_APPROX(mat3(0,2), 2.0f);
- VERIFY_IS_APPROX(mat3(1,0), 3.0f);
- VERIFY_IS_APPROX(mat3(1,1), 4.0f);
- VERIFY_IS_APPROX(mat3(1,2), 5.0f);
- VERIFY_IS_APPROX(mat4(0,0), 0.0f);
- VERIFY_IS_APPROX(mat4(0,1), 1.0f);
- VERIFY_IS_APPROX(mat4(0,2), 2.0f);
- VERIFY_IS_APPROX(mat4(1,0), 3.0f);
- VERIFY_IS_APPROX(mat4(1,1), 4.0f);
- VERIFY_IS_APPROX(mat4(1,2), 5.0f);
- }
- static void test_3d()
- {
- Tensor<float, 3> mat1(2,3,7);
- Tensor<float, 3, RowMajor> mat2(2,3,7);
- float val = 1.0f;
- for (int i = 0; i < 2; ++i) {
- for (int j = 0; j < 3; ++j) {
- for (int k = 0; k < 7; ++k) {
- mat1(i,j,k) = val;
- mat2(i,j,k) = val;
- val += 1.0f;
- }
- }
- }
- Tensor<float, 3> mat3(2,3,7);
- mat3 = mat1 + mat1;
- Tensor<float, 3, RowMajor> mat4(2,3,7);
- mat4 = mat2 * 3.14f;
- Tensor<float, 3> mat5(2,3,7);
- mat5 = mat1.inverse().log();
- Tensor<float, 3, RowMajor> mat6(2,3,7);
- mat6 = mat2.pow(0.5f) * 3.14f;
- Tensor<float, 3> mat7(2,3,7);
- mat7 = mat1.cwiseMax(mat5 * 2.0f).exp();
- Tensor<float, 3, RowMajor> mat8(2,3,7);
- mat8 = (-mat2).exp() * 3.14f;
- Tensor<float, 3, RowMajor> mat9(2,3,7);
- mat9 = mat2 + 3.14f;
- Tensor<float, 3, RowMajor> mat10(2,3,7);
- mat10 = mat2 - 3.14f;
- Tensor<float, 3, RowMajor> mat11(2,3,7);
- mat11 = mat2 / 3.14f;
- val = 1.0f;
- for (int i = 0; i < 2; ++i) {
- for (int j = 0; j < 3; ++j) {
- for (int k = 0; k < 7; ++k) {
- VERIFY_IS_APPROX(mat3(i,j,k), val + val);
- VERIFY_IS_APPROX(mat4(i,j,k), val * 3.14f);
- VERIFY_IS_APPROX(mat5(i,j,k), logf(1.0f/val));
- VERIFY_IS_APPROX(mat6(i,j,k), sqrtf(val) * 3.14f);
- VERIFY_IS_APPROX(mat7(i,j,k), expf((std::max)(val, mat5(i,j,k) * 2.0f)));
- VERIFY_IS_APPROX(mat8(i,j,k), expf(-val) * 3.14f);
- VERIFY_IS_APPROX(mat9(i,j,k), val + 3.14f);
- VERIFY_IS_APPROX(mat10(i,j,k), val - 3.14f);
- VERIFY_IS_APPROX(mat11(i,j,k), val / 3.14f);
- val += 1.0f;
- }
- }
- }
- }
- static void test_constants()
- {
- Tensor<float, 3> mat1(2,3,7);
- Tensor<float, 3> mat2(2,3,7);
- Tensor<float, 3> mat3(2,3,7);
- float val = 1.0f;
- for (int i = 0; i < 2; ++i) {
- for (int j = 0; j < 3; ++j) {
- for (int k = 0; k < 7; ++k) {
- mat1(i,j,k) = val;
- val += 1.0f;
- }
- }
- }
- mat2 = mat1.constant(3.14f);
- mat3 = mat1.cwiseMax(7.3f).exp();
- val = 1.0f;
- for (int i = 0; i < 2; ++i) {
- for (int j = 0; j < 3; ++j) {
- for (int k = 0; k < 7; ++k) {
- VERIFY_IS_APPROX(mat2(i,j,k), 3.14f);
- VERIFY_IS_APPROX(mat3(i,j,k), expf((std::max)(val, 7.3f)));
- val += 1.0f;
- }
- }
- }
- }
- static void test_boolean()
- {
- const int kSize = 31;
- Tensor<int, 1> vec(kSize);
- std::iota(vec.data(), vec.data() + kSize, 0);
- // Test ||.
- Tensor<bool, 1> bool1 = vec < vec.constant(1) || vec > vec.constant(4);
- for (int i = 0; i < kSize; ++i) {
- bool expected = i < 1 || i > 4;
- VERIFY_IS_EQUAL(bool1[i], expected);
- }
- // Test &&, including cast of operand vec.
- Tensor<bool, 1> bool2 = vec.cast<bool>() && vec < vec.constant(4);
- for (int i = 0; i < kSize; ++i) {
- bool expected = bool(i) && i < 4;
- VERIFY_IS_EQUAL(bool2[i], expected);
- }
- // Compilation tests:
- // Test Tensor<bool> against results of cast or comparison; verifies that
- // CoeffReturnType is set to match Op return type of bool for Unary and Binary
- // Ops.
- Tensor<bool, 1> bool3 = vec.cast<bool>() && bool2;
- bool3 = vec < vec.constant(4) && bool2;
- }
- static void test_functors()
- {
- Tensor<float, 3> mat1(2,3,7);
- Tensor<float, 3> mat2(2,3,7);
- Tensor<float, 3> mat3(2,3,7);
- float val = 1.0f;
- for (int i = 0; i < 2; ++i) {
- for (int j = 0; j < 3; ++j) {
- for (int k = 0; k < 7; ++k) {
- mat1(i,j,k) = val;
- val += 1.0f;
- }
- }
- }
- mat2 = mat1.inverse().unaryExpr(&asinf);
- mat3 = mat1.unaryExpr(&tanhf);
- val = 1.0f;
- for (int i = 0; i < 2; ++i) {
- for (int j = 0; j < 3; ++j) {
- for (int k = 0; k < 7; ++k) {
- VERIFY_IS_APPROX(mat2(i,j,k), asinf(1.0f / mat1(i,j,k)));
- VERIFY_IS_APPROX(mat3(i,j,k), tanhf(mat1(i,j,k)));
- val += 1.0f;
- }
- }
- }
- }
- static void test_type_casting()
- {
- Tensor<bool, 3> mat1(2,3,7);
- Tensor<float, 3> mat2(2,3,7);
- Tensor<double, 3> mat3(2,3,7);
- mat1.setRandom();
- mat2.setRandom();
- mat3 = mat1.cast<double>();
- for (int i = 0; i < 2; ++i) {
- for (int j = 0; j < 3; ++j) {
- for (int k = 0; k < 7; ++k) {
- VERIFY_IS_APPROX(mat3(i,j,k), mat1(i,j,k) ? 1.0 : 0.0);
- }
- }
- }
- mat3 = mat2.cast<double>();
- for (int i = 0; i < 2; ++i) {
- for (int j = 0; j < 3; ++j) {
- for (int k = 0; k < 7; ++k) {
- VERIFY_IS_APPROX(mat3(i,j,k), static_cast<double>(mat2(i,j,k)));
- }
- }
- }
- }
- static void test_select()
- {
- Tensor<float, 3> selector(2,3,7);
- Tensor<float, 3> mat1(2,3,7);
- Tensor<float, 3> mat2(2,3,7);
- Tensor<float, 3> result(2,3,7);
- selector.setRandom();
- mat1.setRandom();
- mat2.setRandom();
- result = (selector > selector.constant(0.5f)).select(mat1, mat2);
- for (int i = 0; i < 2; ++i) {
- for (int j = 0; j < 3; ++j) {
- for (int k = 0; k < 7; ++k) {
- VERIFY_IS_APPROX(result(i,j,k), (selector(i,j,k) > 0.5f) ? mat1(i,j,k) : mat2(i,j,k));
- }
- }
- }
- }
- template <typename Scalar>
- void test_minmax_nan_propagation_templ() {
- for (int size = 1; size < 17; ++size) {
- const Scalar kNaN = std::numeric_limits<Scalar>::quiet_NaN();
- const Scalar kInf = std::numeric_limits<Scalar>::infinity();
- const Scalar kZero(0);
- Tensor<Scalar, 1> vec_all_nan(size);
- Tensor<Scalar, 1> vec_one_nan(size);
- Tensor<Scalar, 1> vec_zero(size);
- vec_all_nan.setConstant(kNaN);
- vec_zero.setZero();
- vec_one_nan.setZero();
- vec_one_nan(size/2) = kNaN;
- auto verify_all_nan = [&](const Tensor<Scalar, 1>& v) {
- for (int i = 0; i < size; ++i) {
- VERIFY((numext::isnan)(v(i)));
- }
- };
- auto verify_all_zero = [&](const Tensor<Scalar, 1>& v) {
- for (int i = 0; i < size; ++i) {
- VERIFY_IS_EQUAL(v(i), Scalar(0));
- }
- };
- // Test NaN propagating max.
- // max(nan, nan) = nan
- // max(nan, 0) = nan
- // max(0, nan) = nan
- // max(0, 0) = 0
- verify_all_nan(vec_all_nan.template cwiseMax<PropagateNaN>(kNaN));
- verify_all_nan(vec_all_nan.template cwiseMax<PropagateNaN>(vec_all_nan));
- verify_all_nan(vec_all_nan.template cwiseMax<PropagateNaN>(kZero));
- verify_all_nan(vec_all_nan.template cwiseMax<PropagateNaN>(vec_zero));
- verify_all_nan(vec_zero.template cwiseMax<PropagateNaN>(kNaN));
- verify_all_nan(vec_zero.template cwiseMax<PropagateNaN>(vec_all_nan));
- verify_all_zero(vec_zero.template cwiseMax<PropagateNaN>(kZero));
- verify_all_zero(vec_zero.template cwiseMax<PropagateNaN>(vec_zero));
- // Test number propagating max.
- // max(nan, nan) = nan
- // max(nan, 0) = 0
- // max(0, nan) = 0
- // max(0, 0) = 0
- verify_all_nan(vec_all_nan.template cwiseMax<PropagateNumbers>(kNaN));
- verify_all_nan(vec_all_nan.template cwiseMax<PropagateNumbers>(vec_all_nan));
- verify_all_zero(vec_all_nan.template cwiseMax<PropagateNumbers>(kZero));
- verify_all_zero(vec_all_nan.template cwiseMax<PropagateNumbers>(vec_zero));
- verify_all_zero(vec_zero.template cwiseMax<PropagateNumbers>(kNaN));
- verify_all_zero(vec_zero.template cwiseMax<PropagateNumbers>(vec_all_nan));
- verify_all_zero(vec_zero.template cwiseMax<PropagateNumbers>(kZero));
- verify_all_zero(vec_zero.template cwiseMax<PropagateNumbers>(vec_zero));
- // Test NaN propagating min.
- // min(nan, nan) = nan
- // min(nan, 0) = nan
- // min(0, nan) = nan
- // min(0, 0) = 0
- verify_all_nan(vec_all_nan.template cwiseMin<PropagateNaN>(kNaN));
- verify_all_nan(vec_all_nan.template cwiseMin<PropagateNaN>(vec_all_nan));
- verify_all_nan(vec_all_nan.template cwiseMin<PropagateNaN>(kZero));
- verify_all_nan(vec_all_nan.template cwiseMin<PropagateNaN>(vec_zero));
- verify_all_nan(vec_zero.template cwiseMin<PropagateNaN>(kNaN));
- verify_all_nan(vec_zero.template cwiseMin<PropagateNaN>(vec_all_nan));
- verify_all_zero(vec_zero.template cwiseMin<PropagateNaN>(kZero));
- verify_all_zero(vec_zero.template cwiseMin<PropagateNaN>(vec_zero));
- // Test number propagating min.
- // min(nan, nan) = nan
- // min(nan, 0) = 0
- // min(0, nan) = 0
- // min(0, 0) = 0
- verify_all_nan(vec_all_nan.template cwiseMin<PropagateNumbers>(kNaN));
- verify_all_nan(vec_all_nan.template cwiseMin<PropagateNumbers>(vec_all_nan));
- verify_all_zero(vec_all_nan.template cwiseMin<PropagateNumbers>(kZero));
- verify_all_zero(vec_all_nan.template cwiseMin<PropagateNumbers>(vec_zero));
- verify_all_zero(vec_zero.template cwiseMin<PropagateNumbers>(kNaN));
- verify_all_zero(vec_zero.template cwiseMin<PropagateNumbers>(vec_all_nan));
- verify_all_zero(vec_zero.template cwiseMin<PropagateNumbers>(kZero));
- verify_all_zero(vec_zero.template cwiseMin<PropagateNumbers>(vec_zero));
- // Test min and max reduction
- Tensor<Scalar, 0> val;
- val = vec_zero.minimum();
- VERIFY_IS_EQUAL(val(), kZero);
- val = vec_zero.template minimum<PropagateNaN>();
- VERIFY_IS_EQUAL(val(), kZero);
- val = vec_zero.template minimum<PropagateNumbers>();
- VERIFY_IS_EQUAL(val(), kZero);
- val = vec_zero.maximum();
- VERIFY_IS_EQUAL(val(), kZero);
- val = vec_zero.template maximum<PropagateNaN>();
- VERIFY_IS_EQUAL(val(), kZero);
- val = vec_zero.template maximum<PropagateNumbers>();
- VERIFY_IS_EQUAL(val(), kZero);
- // Test NaN propagation for tensor of all NaNs.
- val = vec_all_nan.template minimum<PropagateNaN>();
- VERIFY((numext::isnan)(val()));
- val = vec_all_nan.template minimum<PropagateNumbers>();
- VERIFY_IS_EQUAL(val(), kInf);
- val = vec_all_nan.template maximum<PropagateNaN>();
- VERIFY((numext::isnan)(val()));
- val = vec_all_nan.template maximum<PropagateNumbers>();
- VERIFY_IS_EQUAL(val(), -kInf);
- // Test NaN propagation for tensor with a single NaN.
- val = vec_one_nan.template minimum<PropagateNaN>();
- VERIFY((numext::isnan)(val()));
- val = vec_one_nan.template minimum<PropagateNumbers>();
- VERIFY_IS_EQUAL(val(), (size == 1 ? kInf : kZero));
- val = vec_one_nan.template maximum<PropagateNaN>();
- VERIFY((numext::isnan)(val()));
- val = vec_one_nan.template maximum<PropagateNumbers>();
- VERIFY_IS_EQUAL(val(), (size == 1 ? -kInf : kZero));
- }
- }
- static void test_clip()
- {
- Tensor<float, 1> vec(6);
- vec(0) = 4.0;
- vec(1) = 8.0;
- vec(2) = 15.0;
- vec(3) = 16.0;
- vec(4) = 23.0;
- vec(5) = 42.0;
- float kMin = 20;
- float kMax = 30;
- Tensor<float, 1> vec_clipped(6);
- vec_clipped = vec.clip(kMin, kMax);
- for (int i = 0; i < 6; ++i) {
- VERIFY_IS_EQUAL(vec_clipped(i), numext::mini(numext::maxi(vec(i), kMin), kMax));
- }
- }
- static void test_minmax_nan_propagation()
- {
- test_minmax_nan_propagation_templ<float>();
- test_minmax_nan_propagation_templ<double>();
- }
- EIGEN_DECLARE_TEST(cxx11_tensor_expr)
- {
- CALL_SUBTEST(test_1d());
- CALL_SUBTEST(test_2d());
- CALL_SUBTEST(test_3d());
- CALL_SUBTEST(test_constants());
- CALL_SUBTEST(test_boolean());
- CALL_SUBTEST(test_functors());
- CALL_SUBTEST(test_type_casting());
- CALL_SUBTEST(test_select());
- CALL_SUBTEST(test_clip());
- // Nan propagation does currently not work like one would expect from std::max/std::min,
- // so we disable it for now
- #if !EIGEN_ARCH_ARM_OR_ARM64
- CALL_SUBTEST(test_minmax_nan_propagation());
- #endif
- }
|