123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150 |
- // This file is part of Eigen, a lightweight C++ template library
- // for linear algebra.
- //
- // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
- //
- // This Source Code Form is subject to the terms of the Mozilla
- // Public License v. 2.0. If a copy of the MPL was not distributed
- // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
- #include "main.h"
- #include <Eigen/CXX11/Tensor>
- using Eigen::Tensor;
- using Eigen::DefaultDevice;
- template <int DataLayout>
- static void test_evals()
- {
- Tensor<float, 2, DataLayout> input(3, 3);
- Tensor<float, 1, DataLayout> kernel(2);
- input.setRandom();
- kernel.setRandom();
- Tensor<float, 2, DataLayout> result(2,3);
- result.setZero();
- Eigen::array<Tensor<float, 2>::Index, 1> dims3;
- dims3[0] = 0;
- typedef TensorEvaluator<decltype(input.convolve(kernel, dims3)), DefaultDevice> Evaluator;
- Evaluator eval(input.convolve(kernel, dims3), DefaultDevice());
- eval.evalTo(result.data());
- EIGEN_STATIC_ASSERT(Evaluator::NumDims==2ul, YOU_MADE_A_PROGRAMMING_MISTAKE);
- VERIFY_IS_EQUAL(eval.dimensions()[0], 2);
- VERIFY_IS_EQUAL(eval.dimensions()[1], 3);
- VERIFY_IS_APPROX(result(0,0), input(0,0)*kernel(0) + input(1,0)*kernel(1)); // index 0
- VERIFY_IS_APPROX(result(0,1), input(0,1)*kernel(0) + input(1,1)*kernel(1)); // index 2
- VERIFY_IS_APPROX(result(0,2), input(0,2)*kernel(0) + input(1,2)*kernel(1)); // index 4
- VERIFY_IS_APPROX(result(1,0), input(1,0)*kernel(0) + input(2,0)*kernel(1)); // index 1
- VERIFY_IS_APPROX(result(1,1), input(1,1)*kernel(0) + input(2,1)*kernel(1)); // index 3
- VERIFY_IS_APPROX(result(1,2), input(1,2)*kernel(0) + input(2,2)*kernel(1)); // index 5
- }
- template <int DataLayout>
- static void test_expr()
- {
- Tensor<float, 2, DataLayout> input(3, 3);
- Tensor<float, 2, DataLayout> kernel(2, 2);
- input.setRandom();
- kernel.setRandom();
- Tensor<float, 2, DataLayout> result(2,2);
- Eigen::array<ptrdiff_t, 2> dims;
- dims[0] = 0;
- dims[1] = 1;
- result = input.convolve(kernel, dims);
- VERIFY_IS_APPROX(result(0,0), input(0,0)*kernel(0,0) + input(0,1)*kernel(0,1) +
- input(1,0)*kernel(1,0) + input(1,1)*kernel(1,1));
- VERIFY_IS_APPROX(result(0,1), input(0,1)*kernel(0,0) + input(0,2)*kernel(0,1) +
- input(1,1)*kernel(1,0) + input(1,2)*kernel(1,1));
- VERIFY_IS_APPROX(result(1,0), input(1,0)*kernel(0,0) + input(1,1)*kernel(0,1) +
- input(2,0)*kernel(1,0) + input(2,1)*kernel(1,1));
- VERIFY_IS_APPROX(result(1,1), input(1,1)*kernel(0,0) + input(1,2)*kernel(0,1) +
- input(2,1)*kernel(1,0) + input(2,2)*kernel(1,1));
- }
- template <int DataLayout>
- static void test_modes() {
- Tensor<float, 1, DataLayout> input(3);
- Tensor<float, 1, DataLayout> kernel(3);
- input(0) = 1.0f;
- input(1) = 2.0f;
- input(2) = 3.0f;
- kernel(0) = 0.5f;
- kernel(1) = 1.0f;
- kernel(2) = 0.0f;
- Eigen::array<ptrdiff_t, 1> dims;
- dims[0] = 0;
- Eigen::array<std::pair<ptrdiff_t, ptrdiff_t>, 1> padding;
- // Emulate VALID mode (as defined in
- // http://docs.scipy.org/doc/numpy/reference/generated/numpy.convolve.html).
- padding[0] = std::make_pair(0, 0);
- Tensor<float, 1, DataLayout> valid(1);
- valid = input.pad(padding).convolve(kernel, dims);
- VERIFY_IS_EQUAL(valid.dimension(0), 1);
- VERIFY_IS_APPROX(valid(0), 2.5f);
- // Emulate SAME mode (as defined in
- // http://docs.scipy.org/doc/numpy/reference/generated/numpy.convolve.html).
- padding[0] = std::make_pair(1, 1);
- Tensor<float, 1, DataLayout> same(3);
- same = input.pad(padding).convolve(kernel, dims);
- VERIFY_IS_EQUAL(same.dimension(0), 3);
- VERIFY_IS_APPROX(same(0), 1.0f);
- VERIFY_IS_APPROX(same(1), 2.5f);
- VERIFY_IS_APPROX(same(2), 4.0f);
- // Emulate FULL mode (as defined in
- // http://docs.scipy.org/doc/numpy/reference/generated/numpy.convolve.html).
- padding[0] = std::make_pair(2, 2);
- Tensor<float, 1, DataLayout> full(5);
- full = input.pad(padding).convolve(kernel, dims);
- VERIFY_IS_EQUAL(full.dimension(0), 5);
- VERIFY_IS_APPROX(full(0), 0.0f);
- VERIFY_IS_APPROX(full(1), 1.0f);
- VERIFY_IS_APPROX(full(2), 2.5f);
- VERIFY_IS_APPROX(full(3), 4.0f);
- VERIFY_IS_APPROX(full(4), 1.5f);
- }
- template <int DataLayout>
- static void test_strides() {
- Tensor<float, 1, DataLayout> input(13);
- Tensor<float, 1, DataLayout> kernel(3);
- input.setRandom();
- kernel.setRandom();
- Eigen::array<ptrdiff_t, 1> dims;
- dims[0] = 0;
- Eigen::array<ptrdiff_t, 1> stride_of_3;
- stride_of_3[0] = 3;
- Eigen::array<ptrdiff_t, 1> stride_of_2;
- stride_of_2[0] = 2;
- Tensor<float, 1, DataLayout> result;
- result = input.stride(stride_of_3).convolve(kernel, dims).stride(stride_of_2);
- VERIFY_IS_EQUAL(result.dimension(0), 2);
- VERIFY_IS_APPROX(result(0), (input(0)*kernel(0) + input(3)*kernel(1) +
- input(6)*kernel(2)));
- VERIFY_IS_APPROX(result(1), (input(6)*kernel(0) + input(9)*kernel(1) +
- input(12)*kernel(2)));
- }
- EIGEN_DECLARE_TEST(cxx11_tensor_convolution)
- {
- CALL_SUBTEST(test_evals<ColMajor>());
- CALL_SUBTEST(test_evals<RowMajor>());
- CALL_SUBTEST(test_expr<ColMajor>());
- CALL_SUBTEST(test_expr<RowMajor>());
- CALL_SUBTEST(test_modes<ColMajor>());
- CALL_SUBTEST(test_modes<RowMajor>());
- CALL_SUBTEST(test_strides<ColMajor>());
- CALL_SUBTEST(test_strides<RowMajor>());
- }
|