123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294 |
- // This file is part of Eigen, a lightweight C++ template library
- // for linear algebra.
- //
- // Copyright (C) 2015 Eugene Brevdo <ebrevdo@google.com>
- // Benoit Steiner <benoit.steiner.goog@gmail.com>
- //
- // This Source Code Form is subject to the terms of the Mozilla
- // Public License v. 2.0. If a copy of the MPL was not distributed
- // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
- #include "main.h"
- #include <Eigen/CXX11/Tensor>
- using Eigen::Tensor;
- using Eigen::array;
- using Eigen::Tuple;
- template <int DataLayout>
- static void test_simple_index_tuples()
- {
- Tensor<float, 4, DataLayout> tensor(2,3,5,7);
- tensor.setRandom();
- tensor = (tensor + tensor.constant(0.5)).log();
- Tensor<Tuple<DenseIndex, float>, 4, DataLayout> index_tuples(2,3,5,7);
- index_tuples = tensor.index_tuples();
- for (DenseIndex n = 0; n < 2*3*5*7; ++n) {
- const Tuple<DenseIndex, float>& v = index_tuples.coeff(n);
- VERIFY_IS_EQUAL(v.first, n);
- VERIFY_IS_EQUAL(v.second, tensor.coeff(n));
- }
- }
- template <int DataLayout>
- static void test_index_tuples_dim()
- {
- Tensor<float, 4, DataLayout> tensor(2,3,5,7);
- tensor.setRandom();
- tensor = (tensor + tensor.constant(0.5)).log();
- Tensor<Tuple<DenseIndex, float>, 4, DataLayout> index_tuples(2,3,5,7);
- index_tuples = tensor.index_tuples();
- for (Eigen::DenseIndex n = 0; n < tensor.size(); ++n) {
- const Tuple<DenseIndex, float>& v = index_tuples(n); //(i, j, k, l);
- VERIFY_IS_EQUAL(v.first, n);
- VERIFY_IS_EQUAL(v.second, tensor(n));
- }
- }
- template <int DataLayout>
- static void test_argmax_tuple_reducer()
- {
- Tensor<float, 4, DataLayout> tensor(2,3,5,7);
- tensor.setRandom();
- tensor = (tensor + tensor.constant(0.5)).log();
- Tensor<Tuple<DenseIndex, float>, 4, DataLayout> index_tuples(2,3,5,7);
- index_tuples = tensor.index_tuples();
- Tensor<Tuple<DenseIndex, float>, 0, DataLayout> reduced;
- DimensionList<DenseIndex, 4> dims;
- reduced = index_tuples.reduce(
- dims, internal::ArgMaxTupleReducer<Tuple<DenseIndex, float> >());
- Tensor<float, 0, DataLayout> maxi = tensor.maximum();
- VERIFY_IS_EQUAL(maxi(), reduced(0).second);
- array<DenseIndex, 3> reduce_dims;
- for (int d = 0; d < 3; ++d) reduce_dims[d] = d;
- Tensor<Tuple<DenseIndex, float>, 1, DataLayout> reduced_by_dims(7);
- reduced_by_dims = index_tuples.reduce(
- reduce_dims, internal::ArgMaxTupleReducer<Tuple<DenseIndex, float> >());
- Tensor<float, 1, DataLayout> max_by_dims = tensor.maximum(reduce_dims);
- for (int l = 0; l < 7; ++l) {
- VERIFY_IS_EQUAL(max_by_dims(l), reduced_by_dims(l).second);
- }
- }
- template <int DataLayout>
- static void test_argmin_tuple_reducer()
- {
- Tensor<float, 4, DataLayout> tensor(2,3,5,7);
- tensor.setRandom();
- tensor = (tensor + tensor.constant(0.5)).log();
- Tensor<Tuple<DenseIndex, float>, 4, DataLayout> index_tuples(2,3,5,7);
- index_tuples = tensor.index_tuples();
- Tensor<Tuple<DenseIndex, float>, 0, DataLayout> reduced;
- DimensionList<DenseIndex, 4> dims;
- reduced = index_tuples.reduce(
- dims, internal::ArgMinTupleReducer<Tuple<DenseIndex, float> >());
- Tensor<float, 0, DataLayout> mini = tensor.minimum();
- VERIFY_IS_EQUAL(mini(), reduced(0).second);
- array<DenseIndex, 3> reduce_dims;
- for (int d = 0; d < 3; ++d) reduce_dims[d] = d;
- Tensor<Tuple<DenseIndex, float>, 1, DataLayout> reduced_by_dims(7);
- reduced_by_dims = index_tuples.reduce(
- reduce_dims, internal::ArgMinTupleReducer<Tuple<DenseIndex, float> >());
- Tensor<float, 1, DataLayout> min_by_dims = tensor.minimum(reduce_dims);
- for (int l = 0; l < 7; ++l) {
- VERIFY_IS_EQUAL(min_by_dims(l), reduced_by_dims(l).second);
- }
- }
- template <int DataLayout>
- static void test_simple_argmax()
- {
- Tensor<float, 4, DataLayout> tensor(2,3,5,7);
- tensor.setRandom();
- tensor = (tensor + tensor.constant(0.5)).log();
- tensor(0,0,0,0) = 10.0;
- Tensor<DenseIndex, 0, DataLayout> tensor_argmax;
- tensor_argmax = tensor.argmax();
- VERIFY_IS_EQUAL(tensor_argmax(0), 0);
- tensor(1,2,4,6) = 20.0;
- tensor_argmax = tensor.argmax();
- VERIFY_IS_EQUAL(tensor_argmax(0), 2*3*5*7 - 1);
- }
- template <int DataLayout>
- static void test_simple_argmin()
- {
- Tensor<float, 4, DataLayout> tensor(2,3,5,7);
- tensor.setRandom();
- tensor = (tensor + tensor.constant(0.5)).log();
- tensor(0,0,0,0) = -10.0;
- Tensor<DenseIndex, 0, DataLayout> tensor_argmin;
- tensor_argmin = tensor.argmin();
- VERIFY_IS_EQUAL(tensor_argmin(0), 0);
- tensor(1,2,4,6) = -20.0;
- tensor_argmin = tensor.argmin();
- VERIFY_IS_EQUAL(tensor_argmin(0), 2*3*5*7 - 1);
- }
- template <int DataLayout>
- static void test_argmax_dim()
- {
- Tensor<float, 4, DataLayout> tensor(2,3,5,7);
- std::vector<int> dims {2, 3, 5, 7};
- for (int dim = 0; dim < 4; ++dim) {
- tensor.setRandom();
- tensor = (tensor + tensor.constant(0.5)).log();
- Tensor<DenseIndex, 3, DataLayout> tensor_argmax;
- array<DenseIndex, 4> ix;
- for (int i = 0; i < 2; ++i) {
- for (int j = 0; j < 3; ++j) {
- for (int k = 0; k < 5; ++k) {
- for (int l = 0; l < 7; ++l) {
- ix[0] = i; ix[1] = j; ix[2] = k; ix[3] = l;
- if (ix[dim] != 0) continue;
- // suppose dim == 1, then for all i, k, l, set tensor(i, 0, k, l) = 10.0
- tensor(ix) = 10.0;
- }
- }
- }
- }
- tensor_argmax = tensor.argmax(dim);
- VERIFY_IS_EQUAL(tensor_argmax.size(),
- ptrdiff_t(2*3*5*7 / tensor.dimension(dim)));
- for (ptrdiff_t n = 0; n < tensor_argmax.size(); ++n) {
- // Expect max to be in the first index of the reduced dimension
- VERIFY_IS_EQUAL(tensor_argmax.data()[n], 0);
- }
- for (int i = 0; i < 2; ++i) {
- for (int j = 0; j < 3; ++j) {
- for (int k = 0; k < 5; ++k) {
- for (int l = 0; l < 7; ++l) {
- ix[0] = i; ix[1] = j; ix[2] = k; ix[3] = l;
- if (ix[dim] != tensor.dimension(dim) - 1) continue;
- // suppose dim == 1, then for all i, k, l, set tensor(i, 2, k, l) = 20.0
- tensor(ix) = 20.0;
- }
- }
- }
- }
- tensor_argmax = tensor.argmax(dim);
- VERIFY_IS_EQUAL(tensor_argmax.size(),
- ptrdiff_t(2*3*5*7 / tensor.dimension(dim)));
- for (ptrdiff_t n = 0; n < tensor_argmax.size(); ++n) {
- // Expect max to be in the last index of the reduced dimension
- VERIFY_IS_EQUAL(tensor_argmax.data()[n], tensor.dimension(dim) - 1);
- }
- }
- }
- template <int DataLayout>
- static void test_argmin_dim()
- {
- Tensor<float, 4, DataLayout> tensor(2,3,5,7);
- std::vector<int> dims {2, 3, 5, 7};
- for (int dim = 0; dim < 4; ++dim) {
- tensor.setRandom();
- tensor = (tensor + tensor.constant(0.5)).log();
- Tensor<DenseIndex, 3, DataLayout> tensor_argmin;
- array<DenseIndex, 4> ix;
- for (int i = 0; i < 2; ++i) {
- for (int j = 0; j < 3; ++j) {
- for (int k = 0; k < 5; ++k) {
- for (int l = 0; l < 7; ++l) {
- ix[0] = i; ix[1] = j; ix[2] = k; ix[3] = l;
- if (ix[dim] != 0) continue;
- // suppose dim == 1, then for all i, k, l, set tensor(i, 0, k, l) = -10.0
- tensor(ix) = -10.0;
- }
- }
- }
- }
- tensor_argmin = tensor.argmin(dim);
- VERIFY_IS_EQUAL(tensor_argmin.size(),
- ptrdiff_t(2*3*5*7 / tensor.dimension(dim)));
- for (ptrdiff_t n = 0; n < tensor_argmin.size(); ++n) {
- // Expect min to be in the first index of the reduced dimension
- VERIFY_IS_EQUAL(tensor_argmin.data()[n], 0);
- }
- for (int i = 0; i < 2; ++i) {
- for (int j = 0; j < 3; ++j) {
- for (int k = 0; k < 5; ++k) {
- for (int l = 0; l < 7; ++l) {
- ix[0] = i; ix[1] = j; ix[2] = k; ix[3] = l;
- if (ix[dim] != tensor.dimension(dim) - 1) continue;
- // suppose dim == 1, then for all i, k, l, set tensor(i, 2, k, l) = -20.0
- tensor(ix) = -20.0;
- }
- }
- }
- }
- tensor_argmin = tensor.argmin(dim);
- VERIFY_IS_EQUAL(tensor_argmin.size(),
- ptrdiff_t(2*3*5*7 / tensor.dimension(dim)));
- for (ptrdiff_t n = 0; n < tensor_argmin.size(); ++n) {
- // Expect min to be in the last index of the reduced dimension
- VERIFY_IS_EQUAL(tensor_argmin.data()[n], tensor.dimension(dim) - 1);
- }
- }
- }
- EIGEN_DECLARE_TEST(cxx11_tensor_argmax)
- {
- CALL_SUBTEST(test_simple_index_tuples<RowMajor>());
- CALL_SUBTEST(test_simple_index_tuples<ColMajor>());
- CALL_SUBTEST(test_index_tuples_dim<RowMajor>());
- CALL_SUBTEST(test_index_tuples_dim<ColMajor>());
- CALL_SUBTEST(test_argmax_tuple_reducer<RowMajor>());
- CALL_SUBTEST(test_argmax_tuple_reducer<ColMajor>());
- CALL_SUBTEST(test_argmin_tuple_reducer<RowMajor>());
- CALL_SUBTEST(test_argmin_tuple_reducer<ColMajor>());
- CALL_SUBTEST(test_simple_argmax<RowMajor>());
- CALL_SUBTEST(test_simple_argmax<ColMajor>());
- CALL_SUBTEST(test_simple_argmin<RowMajor>());
- CALL_SUBTEST(test_simple_argmin<ColMajor>());
- CALL_SUBTEST(test_argmax_dim<RowMajor>());
- CALL_SUBTEST(test_argmax_dim<ColMajor>());
- CALL_SUBTEST(test_argmin_dim<RowMajor>());
- CALL_SUBTEST(test_argmin_dim<ColMajor>());
- }
|