123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101 |
- // This file is part of Eigen, a lightweight C++ template library
- // for linear algebra.
- //
- // Copyright (C) 2013 Christoph Hertzberg <chtz@informatik.uni-bremen.de>
- //
- // This Source Code Form is subject to the terms of the Mozilla
- // Public License v. 2.0. If a copy of the MPL was not distributed
- // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
- #include "main.h"
- #include <unsupported/Eigen/AutoDiff>
- /*
- * In this file scalar derivations are tested for correctness.
- * TODO add more tests!
- */
- template<typename Scalar> void check_atan2()
- {
- typedef Matrix<Scalar, 1, 1> Deriv1;
- typedef AutoDiffScalar<Deriv1> AD;
-
- AD x(internal::random<Scalar>(-3.0, 3.0), Deriv1::UnitX());
-
- using std::exp;
- Scalar r = exp(internal::random<Scalar>(-10, 10));
-
- AD s = sin(x), c = cos(x);
- AD res = atan2(r*s, r*c);
-
- VERIFY_IS_APPROX(res.value(), x.value());
- VERIFY_IS_APPROX(res.derivatives(), x.derivatives());
- res = atan2(r*s+0, r*c+0);
- VERIFY_IS_APPROX(res.value(), x.value());
- VERIFY_IS_APPROX(res.derivatives(), x.derivatives());
- }
- template<typename Scalar> void check_hyperbolic_functions()
- {
- using std::sinh;
- using std::cosh;
- using std::tanh;
- typedef Matrix<Scalar, 1, 1> Deriv1;
- typedef AutoDiffScalar<Deriv1> AD;
- Deriv1 p = Deriv1::Random();
- AD val(p.x(),Deriv1::UnitX());
- Scalar cosh_px = std::cosh(p.x());
- AD res1 = tanh(val);
- VERIFY_IS_APPROX(res1.value(), std::tanh(p.x()));
- VERIFY_IS_APPROX(res1.derivatives().x(), Scalar(1.0) / (cosh_px * cosh_px));
- AD res2 = sinh(val);
- VERIFY_IS_APPROX(res2.value(), std::sinh(p.x()));
- VERIFY_IS_APPROX(res2.derivatives().x(), cosh_px);
- AD res3 = cosh(val);
- VERIFY_IS_APPROX(res3.value(), cosh_px);
- VERIFY_IS_APPROX(res3.derivatives().x(), std::sinh(p.x()));
- // Check constant values.
- const Scalar sample_point = Scalar(1) / Scalar(3);
- val = AD(sample_point,Deriv1::UnitX());
- res1 = tanh(val);
- VERIFY_IS_APPROX(res1.derivatives().x(), Scalar(0.896629559604914));
- res2 = sinh(val);
- VERIFY_IS_APPROX(res2.derivatives().x(), Scalar(1.056071867829939));
- res3 = cosh(val);
- VERIFY_IS_APPROX(res3.derivatives().x(), Scalar(0.339540557256150));
- }
- template <typename Scalar>
- void check_limits_specialization()
- {
- typedef Eigen::Matrix<Scalar, 1, 1> Deriv;
- typedef Eigen::AutoDiffScalar<Deriv> AD;
- typedef std::numeric_limits<AD> A;
- typedef std::numeric_limits<Scalar> B;
- // workaround "unused typedef" warning:
- VERIFY(!bool(internal::is_same<B, A>::value));
- #if EIGEN_HAS_CXX11
- VERIFY(bool(std::is_base_of<B, A>::value));
- #endif
- }
- EIGEN_DECLARE_TEST(autodiff_scalar)
- {
- for(int i = 0; i < g_repeat; i++) {
- CALL_SUBTEST_1( check_atan2<float>() );
- CALL_SUBTEST_2( check_atan2<double>() );
- CALL_SUBTEST_3( check_hyperbolic_functions<float>() );
- CALL_SUBTEST_4( check_hyperbolic_functions<double>() );
- CALL_SUBTEST_5( check_limits_specialization<double>());
- }
- }
|