123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296 |
- // This file is part of Eigen, a lightweight C++ template library
- // for linear algebra.
- //
- // Copyright (C) 2015 Tal Hadad <tal_hd@hotmail.com>
- //
- // This Source Code Form is subject to the terms of the Mozilla
- // Public License v. 2.0. If a copy of the MPL was not distributed
- // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
- #include "main.h"
- #include <unsupported/Eigen/EulerAngles>
- using namespace Eigen;
- // Unfortunately, we need to specialize it in order to work. (We could add it in main.h test framework)
- template <typename Scalar, class System>
- bool verifyIsApprox(const Eigen::EulerAngles<Scalar, System>& a, const Eigen::EulerAngles<Scalar, System>& b)
- {
- return verifyIsApprox(a.angles(), b.angles());
- }
- // Verify that x is in the approxed range [a, b]
- #define VERIFY_APPROXED_RANGE(a, x, b) \
- do { \
- VERIFY_IS_APPROX_OR_LESS_THAN(a, x); \
- VERIFY_IS_APPROX_OR_LESS_THAN(x, b); \
- } while(0)
- const char X = EULER_X;
- const char Y = EULER_Y;
- const char Z = EULER_Z;
- template<typename Scalar, class EulerSystem>
- void verify_euler(const EulerAngles<Scalar, EulerSystem>& e)
- {
- typedef EulerAngles<Scalar, EulerSystem> EulerAnglesType;
- typedef Matrix<Scalar,3,3> Matrix3;
- typedef Matrix<Scalar,3,1> Vector3;
- typedef Quaternion<Scalar> QuaternionType;
- typedef AngleAxis<Scalar> AngleAxisType;
-
- const Scalar ONE = Scalar(1);
- const Scalar HALF_PI = Scalar(EIGEN_PI / 2);
- const Scalar PI = Scalar(EIGEN_PI);
-
- // It's very important calc the acceptable precision depending on the distance from the pole.
- const Scalar longitudeRadius = std::abs(
- EulerSystem::IsTaitBryan ?
- std::cos(e.beta()) :
- std::sin(e.beta())
- );
- Scalar precision = test_precision<Scalar>() / longitudeRadius;
-
- Scalar betaRangeStart, betaRangeEnd;
- if (EulerSystem::IsTaitBryan)
- {
- betaRangeStart = -HALF_PI;
- betaRangeEnd = HALF_PI;
- }
- else
- {
- if (!EulerSystem::IsBetaOpposite)
- {
- betaRangeStart = 0;
- betaRangeEnd = PI;
- }
- else
- {
- betaRangeStart = -PI;
- betaRangeEnd = 0;
- }
- }
-
- const Vector3 I_ = EulerAnglesType::AlphaAxisVector();
- const Vector3 J_ = EulerAnglesType::BetaAxisVector();
- const Vector3 K_ = EulerAnglesType::GammaAxisVector();
-
- // Is approx checks
- VERIFY(e.isApprox(e));
- VERIFY_IS_APPROX(e, e);
- VERIFY_IS_NOT_APPROX(e, EulerAnglesType(e.alpha() + ONE, e.beta() + ONE, e.gamma() + ONE));
- const Matrix3 m(e);
- VERIFY_IS_APPROX(Scalar(m.determinant()), ONE);
- EulerAnglesType ebis(m);
-
- // When no roll(acting like polar representation), we have the best precision.
- // One of those cases is when the Euler angles are on the pole, and because it's singular case,
- // the computation returns no roll.
- if (ebis.beta() == 0)
- precision = test_precision<Scalar>();
-
- // Check that eabis in range
- VERIFY_APPROXED_RANGE(-PI, ebis.alpha(), PI);
- VERIFY_APPROXED_RANGE(betaRangeStart, ebis.beta(), betaRangeEnd);
- VERIFY_APPROXED_RANGE(-PI, ebis.gamma(), PI);
- const Matrix3 mbis(AngleAxisType(ebis.alpha(), I_) * AngleAxisType(ebis.beta(), J_) * AngleAxisType(ebis.gamma(), K_));
- VERIFY_IS_APPROX(Scalar(mbis.determinant()), ONE);
- VERIFY_IS_APPROX(mbis, ebis.toRotationMatrix());
- /*std::cout << "===================\n" <<
- "e: " << e << std::endl <<
- "eabis: " << eabis.transpose() << std::endl <<
- "m: " << m << std::endl <<
- "mbis: " << mbis << std::endl <<
- "X: " << (m * Vector3::UnitX()).transpose() << std::endl <<
- "X: " << (mbis * Vector3::UnitX()).transpose() << std::endl;*/
- VERIFY(m.isApprox(mbis, precision));
- // Test if ea and eabis are the same
- // Need to check both singular and non-singular cases
- // There are two singular cases.
- // 1. When I==K and sin(ea(1)) == 0
- // 2. When I!=K and cos(ea(1)) == 0
- // TODO: Make this test work well, and use range saturation function.
- /*// If I==K, and ea[1]==0, then there no unique solution.
- // The remark apply in the case where I!=K, and |ea[1]| is close to +-pi/2.
- if( (i!=k || ea[1]!=0) && (i==k || !internal::isApprox(abs(ea[1]),Scalar(EIGEN_PI/2),test_precision<Scalar>())) )
- VERIFY_IS_APPROX(ea, eabis);*/
-
- // Quaternions
- const QuaternionType q(e);
- ebis = q;
- const QuaternionType qbis(ebis);
- VERIFY(internal::isApprox<Scalar>(std::abs(q.dot(qbis)), ONE, precision));
- //VERIFY_IS_APPROX(eabis, eabis2);// Verify that the euler angles are still the same
-
- // A suggestion for simple product test when will be supported.
- /*EulerAnglesType e2(PI/2, PI/2, PI/2);
- Matrix3 m2(e2);
- VERIFY_IS_APPROX(e*e2, m*m2);*/
- }
- template<signed char A, signed char B, signed char C, typename Scalar>
- void verify_euler_vec(const Matrix<Scalar,3,1>& ea)
- {
- verify_euler(EulerAngles<Scalar, EulerSystem<A, B, C> >(ea[0], ea[1], ea[2]));
- }
- template<signed char A, signed char B, signed char C, typename Scalar>
- void verify_euler_all_neg(const Matrix<Scalar,3,1>& ea)
- {
- verify_euler_vec<+A,+B,+C>(ea);
- verify_euler_vec<+A,+B,-C>(ea);
- verify_euler_vec<+A,-B,+C>(ea);
- verify_euler_vec<+A,-B,-C>(ea);
-
- verify_euler_vec<-A,+B,+C>(ea);
- verify_euler_vec<-A,+B,-C>(ea);
- verify_euler_vec<-A,-B,+C>(ea);
- verify_euler_vec<-A,-B,-C>(ea);
- }
- template<typename Scalar> void check_all_var(const Matrix<Scalar,3,1>& ea)
- {
- verify_euler_all_neg<X,Y,Z>(ea);
- verify_euler_all_neg<X,Y,X>(ea);
- verify_euler_all_neg<X,Z,Y>(ea);
- verify_euler_all_neg<X,Z,X>(ea);
-
- verify_euler_all_neg<Y,Z,X>(ea);
- verify_euler_all_neg<Y,Z,Y>(ea);
- verify_euler_all_neg<Y,X,Z>(ea);
- verify_euler_all_neg<Y,X,Y>(ea);
-
- verify_euler_all_neg<Z,X,Y>(ea);
- verify_euler_all_neg<Z,X,Z>(ea);
- verify_euler_all_neg<Z,Y,X>(ea);
- verify_euler_all_neg<Z,Y,Z>(ea);
- }
- template<typename Scalar> void check_singular_cases(const Scalar& singularBeta)
- {
- typedef Matrix<Scalar,3,1> Vector3;
- const Scalar PI = Scalar(EIGEN_PI);
-
- for (Scalar epsilon = NumTraits<Scalar>::epsilon(); epsilon < 1; epsilon *= Scalar(1.2))
- {
- check_all_var(Vector3(PI/4, singularBeta, PI/3));
- check_all_var(Vector3(PI/4, singularBeta - epsilon, PI/3));
- check_all_var(Vector3(PI/4, singularBeta - Scalar(1.5)*epsilon, PI/3));
- check_all_var(Vector3(PI/4, singularBeta - 2*epsilon, PI/3));
- check_all_var(Vector3(PI*Scalar(0.8), singularBeta - epsilon, Scalar(0.9)*PI));
- check_all_var(Vector3(PI*Scalar(-0.9), singularBeta + epsilon, PI*Scalar(0.3)));
- check_all_var(Vector3(PI*Scalar(-0.6), singularBeta + Scalar(1.5)*epsilon, PI*Scalar(0.3)));
- check_all_var(Vector3(PI*Scalar(-0.5), singularBeta + 2*epsilon, PI*Scalar(0.4)));
- check_all_var(Vector3(PI*Scalar(0.9), singularBeta + epsilon, Scalar(0.8)*PI));
- }
-
- // This one for sanity, it had a problem with near pole cases in float scalar.
- check_all_var(Vector3(PI*Scalar(0.8), singularBeta - Scalar(1E-6), Scalar(0.9)*PI));
- }
- template<typename Scalar> void eulerangles_manual()
- {
- typedef Matrix<Scalar,3,1> Vector3;
- typedef Matrix<Scalar,Dynamic,1> VectorX;
- const Vector3 Zero = Vector3::Zero();
- const Scalar PI = Scalar(EIGEN_PI);
-
- check_all_var(Zero);
-
- // singular cases
- check_singular_cases(PI/2);
- check_singular_cases(-PI/2);
-
- check_singular_cases(Scalar(0));
- check_singular_cases(Scalar(-0));
-
- check_singular_cases(PI);
- check_singular_cases(-PI);
-
- // non-singular cases
- VectorX alpha = VectorX::LinSpaced(20, Scalar(-0.99) * PI, PI);
- VectorX beta = VectorX::LinSpaced(20, Scalar(-0.49) * PI, Scalar(0.49) * PI);
- VectorX gamma = VectorX::LinSpaced(20, Scalar(-0.99) * PI, PI);
- for (int i = 0; i < alpha.size(); ++i) {
- for (int j = 0; j < beta.size(); ++j) {
- for (int k = 0; k < gamma.size(); ++k) {
- check_all_var(Vector3(alpha(i), beta(j), gamma(k)));
- }
- }
- }
- }
- template<typename Scalar> void eulerangles_rand()
- {
- typedef Matrix<Scalar,3,3> Matrix3;
- typedef Matrix<Scalar,3,1> Vector3;
- typedef Array<Scalar,3,1> Array3;
- typedef Quaternion<Scalar> Quaternionx;
- typedef AngleAxis<Scalar> AngleAxisType;
- Scalar a = internal::random<Scalar>(-Scalar(EIGEN_PI), Scalar(EIGEN_PI));
- Quaternionx q1;
- q1 = AngleAxisType(a, Vector3::Random().normalized());
- Matrix3 m;
- m = q1;
-
- Vector3 ea = m.eulerAngles(0,1,2);
- check_all_var(ea);
- ea = m.eulerAngles(0,1,0);
- check_all_var(ea);
-
- // Check with purely random Quaternion:
- q1.coeffs() = Quaternionx::Coefficients::Random().normalized();
- m = q1;
- ea = m.eulerAngles(0,1,2);
- check_all_var(ea);
- ea = m.eulerAngles(0,1,0);
- check_all_var(ea);
-
- // Check with random angles in range [0:pi]x[-pi:pi]x[-pi:pi].
- ea = (Array3::Random() + Array3(1,0,0))*Scalar(EIGEN_PI)*Array3(0.5,1,1);
- check_all_var(ea);
-
- ea[2] = ea[0] = internal::random<Scalar>(0,Scalar(EIGEN_PI));
- check_all_var(ea);
-
- ea[0] = ea[1] = internal::random<Scalar>(0,Scalar(EIGEN_PI));
- check_all_var(ea);
-
- ea[1] = 0;
- check_all_var(ea);
-
- ea.head(2).setZero();
- check_all_var(ea);
-
- ea.setZero();
- check_all_var(ea);
- }
- EIGEN_DECLARE_TEST(EulerAngles)
- {
- // Simple cast test
- EulerAnglesXYZd onesEd(1, 1, 1);
- EulerAnglesXYZf onesEf = onesEd.cast<float>();
- VERIFY_IS_APPROX(onesEd, onesEf.cast<double>());
- // Simple Construction from Vector3 test
- VERIFY_IS_APPROX(onesEd, EulerAnglesXYZd(Vector3d::Ones()));
-
- CALL_SUBTEST_1( eulerangles_manual<float>() );
- CALL_SUBTEST_2( eulerangles_manual<double>() );
-
- for(int i = 0; i < g_repeat; i++) {
- CALL_SUBTEST_3( eulerangles_rand<float>() );
- CALL_SUBTEST_4( eulerangles_rand<double>() );
- }
-
- // TODO: Add tests for auto diff
- // TODO: Add tests for complex numbers
- }
|