123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263 |
- #include <iostream>
- #define EIGEN_USE_SYCL
- #include <unsupported/Eigen/CXX11/Tensor>
- using Eigen::array;
- using Eigen::SyclDevice;
- using Eigen::Tensor;
- using Eigen::TensorMap;
- int main()
- {
- using DataType = float;
- using IndexType = int64_t;
- constexpr auto DataLayout = Eigen::RowMajor;
- auto devices = Eigen::get_sycl_supported_devices();
- const auto device_selector = *devices.begin();
- Eigen::QueueInterface queueInterface(device_selector);
- auto sycl_device = Eigen::SyclDevice(&queueInterface);
-
- // create the tensors to be used in the operation
- IndexType sizeDim1 = 3;
- IndexType sizeDim2 = 3;
- IndexType sizeDim3 = 3;
- array<IndexType, 3> tensorRange = {{sizeDim1, sizeDim2, sizeDim3}};
- // initialize the tensors with the data we want manipulate to
- Tensor<DataType, 3,DataLayout, IndexType> in1(tensorRange);
- Tensor<DataType, 3,DataLayout, IndexType> in2(tensorRange);
- Tensor<DataType, 3,DataLayout, IndexType> out(tensorRange);
- // set up some random data in the tensors to be multiplied
- in1 = in1.random();
- in2 = in2.random();
- // allocate memory for the tensors
- DataType * gpu_in1_data = static_cast<DataType*>(sycl_device.allocate(in1.size()*sizeof(DataType)));
- DataType * gpu_in2_data = static_cast<DataType*>(sycl_device.allocate(in2.size()*sizeof(DataType)));
- DataType * gpu_out_data = static_cast<DataType*>(sycl_device.allocate(out.size()*sizeof(DataType)));
- //
- TensorMap<Tensor<DataType, 3, DataLayout, IndexType>> gpu_in1(gpu_in1_data, tensorRange);
- TensorMap<Tensor<DataType, 3, DataLayout, IndexType>> gpu_in2(gpu_in2_data, tensorRange);
- TensorMap<Tensor<DataType, 3, DataLayout, IndexType>> gpu_out(gpu_out_data, tensorRange);
- // copy the memory to the device and do the c=a*b calculation
- sycl_device.memcpyHostToDevice(gpu_in1_data, in1.data(),(in1.size())*sizeof(DataType));
- sycl_device.memcpyHostToDevice(gpu_in2_data, in2.data(),(in2.size())*sizeof(DataType));
- gpu_out.device(sycl_device) = gpu_in1 * gpu_in2;
- sycl_device.memcpyDeviceToHost(out.data(), gpu_out_data,(out.size())*sizeof(DataType));
- sycl_device.synchronize();
- // print out the results
- for (IndexType i = 0; i < sizeDim1; ++i) {
- for (IndexType j = 0; j < sizeDim2; ++j) {
- for (IndexType k = 0; k < sizeDim3; ++k) {
- std::cout << "device_out" << "(" << i << ", " << j << ", " << k << ") : " << out(i,j,k)
- << " vs host_out" << "(" << i << ", " << j << ", " << k << ") : " << in1(i,j,k) * in2(i,j,k) << "\n";
- }
- }
- }
- printf("c=a*b Done\n");
- }
|