utils.py 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597
  1. import collections
  2. import math
  3. import pathlib
  4. import warnings
  5. from itertools import repeat
  6. from types import FunctionType
  7. from typing import Any, BinaryIO, List, Optional, Tuple, Union
  8. import numpy as np
  9. import torch
  10. from PIL import Image, ImageColor, ImageDraw, ImageFont
  11. __all__ = [
  12. "make_grid",
  13. "save_image",
  14. "draw_bounding_boxes",
  15. "draw_segmentation_masks",
  16. "draw_keypoints",
  17. "flow_to_image",
  18. ]
  19. @torch.no_grad()
  20. def make_grid(
  21. tensor: Union[torch.Tensor, List[torch.Tensor]],
  22. nrow: int = 8,
  23. padding: int = 2,
  24. normalize: bool = False,
  25. value_range: Optional[Tuple[int, int]] = None,
  26. scale_each: bool = False,
  27. pad_value: float = 0.0,
  28. ) -> torch.Tensor:
  29. """
  30. Make a grid of images.
  31. Args:
  32. tensor (Tensor or list): 4D mini-batch Tensor of shape (B x C x H x W)
  33. or a list of images all of the same size.
  34. nrow (int, optional): Number of images displayed in each row of the grid.
  35. The final grid size is ``(B / nrow, nrow)``. Default: ``8``.
  36. padding (int, optional): amount of padding. Default: ``2``.
  37. normalize (bool, optional): If True, shift the image to the range (0, 1),
  38. by the min and max values specified by ``value_range``. Default: ``False``.
  39. value_range (tuple, optional): tuple (min, max) where min and max are numbers,
  40. then these numbers are used to normalize the image. By default, min and max
  41. are computed from the tensor.
  42. scale_each (bool, optional): If ``True``, scale each image in the batch of
  43. images separately rather than the (min, max) over all images. Default: ``False``.
  44. pad_value (float, optional): Value for the padded pixels. Default: ``0``.
  45. Returns:
  46. grid (Tensor): the tensor containing grid of images.
  47. """
  48. if not torch.jit.is_scripting() and not torch.jit.is_tracing():
  49. _log_api_usage_once(make_grid)
  50. if not torch.is_tensor(tensor):
  51. if isinstance(tensor, list):
  52. for t in tensor:
  53. if not torch.is_tensor(t):
  54. raise TypeError(f"tensor or list of tensors expected, got a list containing {type(t)}")
  55. else:
  56. raise TypeError(f"tensor or list of tensors expected, got {type(tensor)}")
  57. # if list of tensors, convert to a 4D mini-batch Tensor
  58. if isinstance(tensor, list):
  59. tensor = torch.stack(tensor, dim=0)
  60. if tensor.dim() == 2: # single image H x W
  61. tensor = tensor.unsqueeze(0)
  62. if tensor.dim() == 3: # single image
  63. if tensor.size(0) == 1: # if single-channel, convert to 3-channel
  64. tensor = torch.cat((tensor, tensor, tensor), 0)
  65. tensor = tensor.unsqueeze(0)
  66. if tensor.dim() == 4 and tensor.size(1) == 1: # single-channel images
  67. tensor = torch.cat((tensor, tensor, tensor), 1)
  68. if normalize is True:
  69. tensor = tensor.clone() # avoid modifying tensor in-place
  70. if value_range is not None and not isinstance(value_range, tuple):
  71. raise TypeError("value_range has to be a tuple (min, max) if specified. min and max are numbers")
  72. def norm_ip(img, low, high):
  73. img.clamp_(min=low, max=high)
  74. img.sub_(low).div_(max(high - low, 1e-5))
  75. def norm_range(t, value_range):
  76. if value_range is not None:
  77. norm_ip(t, value_range[0], value_range[1])
  78. else:
  79. norm_ip(t, float(t.min()), float(t.max()))
  80. if scale_each is True:
  81. for t in tensor: # loop over mini-batch dimension
  82. norm_range(t, value_range)
  83. else:
  84. norm_range(tensor, value_range)
  85. if not isinstance(tensor, torch.Tensor):
  86. raise TypeError("tensor should be of type torch.Tensor")
  87. if tensor.size(0) == 1:
  88. return tensor.squeeze(0)
  89. # make the mini-batch of images into a grid
  90. nmaps = tensor.size(0)
  91. xmaps = min(nrow, nmaps)
  92. ymaps = int(math.ceil(float(nmaps) / xmaps))
  93. height, width = int(tensor.size(2) + padding), int(tensor.size(3) + padding)
  94. num_channels = tensor.size(1)
  95. grid = tensor.new_full((num_channels, height * ymaps + padding, width * xmaps + padding), pad_value)
  96. k = 0
  97. for y in range(ymaps):
  98. for x in range(xmaps):
  99. if k >= nmaps:
  100. break
  101. # Tensor.copy_() is a valid method but seems to be missing from the stubs
  102. # https://pytorch.org/docs/stable/tensors.html#torch.Tensor.copy_
  103. grid.narrow(1, y * height + padding, height - padding).narrow( # type: ignore[attr-defined]
  104. 2, x * width + padding, width - padding
  105. ).copy_(tensor[k])
  106. k = k + 1
  107. return grid
  108. @torch.no_grad()
  109. def save_image(
  110. tensor: Union[torch.Tensor, List[torch.Tensor]],
  111. fp: Union[str, pathlib.Path, BinaryIO],
  112. format: Optional[str] = None,
  113. **kwargs,
  114. ) -> None:
  115. """
  116. Save a given Tensor into an image file.
  117. Args:
  118. tensor (Tensor or list): Image to be saved. If given a mini-batch tensor,
  119. saves the tensor as a grid of images by calling ``make_grid``.
  120. fp (string or file object): A filename or a file object
  121. format(Optional): If omitted, the format to use is determined from the filename extension.
  122. If a file object was used instead of a filename, this parameter should always be used.
  123. **kwargs: Other arguments are documented in ``make_grid``.
  124. """
  125. if not torch.jit.is_scripting() and not torch.jit.is_tracing():
  126. _log_api_usage_once(save_image)
  127. grid = make_grid(tensor, **kwargs)
  128. # Add 0.5 after unnormalizing to [0, 255] to round to the nearest integer
  129. ndarr = grid.mul(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).to("cpu", torch.uint8).numpy()
  130. im = Image.fromarray(ndarr)
  131. im.save(fp, format=format)
  132. @torch.no_grad()
  133. def draw_bounding_boxes(
  134. image: torch.Tensor,
  135. boxes: torch.Tensor,
  136. labels: Optional[List[str]] = None,
  137. colors: Optional[Union[List[Union[str, Tuple[int, int, int]]], str, Tuple[int, int, int]]] = None,
  138. fill: Optional[bool] = False,
  139. width: int = 1,
  140. font: Optional[str] = None,
  141. font_size: Optional[int] = None,
  142. ) -> torch.Tensor:
  143. """
  144. Draws bounding boxes on given image.
  145. The values of the input image should be uint8 between 0 and 255.
  146. If fill is True, Resulting Tensor should be saved as PNG image.
  147. Args:
  148. image (Tensor): Tensor of shape (C x H x W) and dtype uint8.
  149. boxes (Tensor): Tensor of size (N, 4) containing bounding boxes in (xmin, ymin, xmax, ymax) format. Note that
  150. the boxes are absolute coordinates with respect to the image. In other words: `0 <= xmin < xmax < W` and
  151. `0 <= ymin < ymax < H`.
  152. labels (List[str]): List containing the labels of bounding boxes.
  153. colors (color or list of colors, optional): List containing the colors
  154. of the boxes or single color for all boxes. The color can be represented as
  155. PIL strings e.g. "red" or "#FF00FF", or as RGB tuples e.g. ``(240, 10, 157)``.
  156. By default, random colors are generated for boxes.
  157. fill (bool): If `True` fills the bounding box with specified color.
  158. width (int): Width of bounding box.
  159. font (str): A filename containing a TrueType font. If the file is not found in this filename, the loader may
  160. also search in other directories, such as the `fonts/` directory on Windows or `/Library/Fonts/`,
  161. `/System/Library/Fonts/` and `~/Library/Fonts/` on macOS.
  162. font_size (int): The requested font size in points.
  163. Returns:
  164. img (Tensor[C, H, W]): Image Tensor of dtype uint8 with bounding boxes plotted.
  165. """
  166. if not torch.jit.is_scripting() and not torch.jit.is_tracing():
  167. _log_api_usage_once(draw_bounding_boxes)
  168. if not isinstance(image, torch.Tensor):
  169. raise TypeError(f"Tensor expected, got {type(image)}")
  170. elif image.dtype != torch.uint8:
  171. raise ValueError(f"Tensor uint8 expected, got {image.dtype}")
  172. elif image.dim() != 3:
  173. raise ValueError("Pass individual images, not batches")
  174. elif image.size(0) not in {1, 3}:
  175. raise ValueError("Only grayscale and RGB images are supported")
  176. elif (boxes[:, 0] > boxes[:, 2]).any() or (boxes[:, 1] > boxes[:, 3]).any():
  177. raise ValueError(
  178. "Boxes need to be in (xmin, ymin, xmax, ymax) format. Use torchvision.ops.box_convert to convert them"
  179. )
  180. num_boxes = boxes.shape[0]
  181. if num_boxes == 0:
  182. warnings.warn("boxes doesn't contain any box. No box was drawn")
  183. return image
  184. if labels is None:
  185. labels: Union[List[str], List[None]] = [None] * num_boxes # type: ignore[no-redef]
  186. elif len(labels) != num_boxes:
  187. raise ValueError(
  188. f"Number of boxes ({num_boxes}) and labels ({len(labels)}) mismatch. Please specify labels for each box."
  189. )
  190. colors = _parse_colors(colors, num_objects=num_boxes)
  191. if font is None:
  192. if font_size is not None:
  193. warnings.warn("Argument 'font_size' will be ignored since 'font' is not set.")
  194. txt_font = ImageFont.load_default()
  195. else:
  196. txt_font = ImageFont.truetype(font=font, size=font_size or 10)
  197. # Handle Grayscale images
  198. if image.size(0) == 1:
  199. image = torch.tile(image, (3, 1, 1))
  200. ndarr = image.permute(1, 2, 0).cpu().numpy()
  201. img_to_draw = Image.fromarray(ndarr)
  202. img_boxes = boxes.to(torch.int64).tolist()
  203. if fill:
  204. draw = ImageDraw.Draw(img_to_draw, "RGBA")
  205. else:
  206. draw = ImageDraw.Draw(img_to_draw)
  207. for bbox, color, label in zip(img_boxes, colors, labels): # type: ignore[arg-type]
  208. if fill:
  209. fill_color = color + (100,)
  210. draw.rectangle(bbox, width=width, outline=color, fill=fill_color)
  211. else:
  212. draw.rectangle(bbox, width=width, outline=color)
  213. if label is not None:
  214. margin = width + 1
  215. draw.text((bbox[0] + margin, bbox[1] + margin), label, fill=color, font=txt_font)
  216. return torch.from_numpy(np.array(img_to_draw)).permute(2, 0, 1).to(dtype=torch.uint8)
  217. @torch.no_grad()
  218. def draw_segmentation_masks(
  219. image: torch.Tensor,
  220. masks: torch.Tensor,
  221. alpha: float = 0.8,
  222. colors: Optional[Union[List[Union[str, Tuple[int, int, int]]], str, Tuple[int, int, int]]] = None,
  223. ) -> torch.Tensor:
  224. """
  225. Draws segmentation masks on given RGB image.
  226. The values of the input image should be uint8 between 0 and 255.
  227. Args:
  228. image (Tensor): Tensor of shape (3, H, W) and dtype uint8.
  229. masks (Tensor): Tensor of shape (num_masks, H, W) or (H, W) and dtype bool.
  230. alpha (float): Float number between 0 and 1 denoting the transparency of the masks.
  231. 0 means full transparency, 1 means no transparency.
  232. colors (color or list of colors, optional): List containing the colors
  233. of the masks or single color for all masks. The color can be represented as
  234. PIL strings e.g. "red" or "#FF00FF", or as RGB tuples e.g. ``(240, 10, 157)``.
  235. By default, random colors are generated for each mask.
  236. Returns:
  237. img (Tensor[C, H, W]): Image Tensor, with segmentation masks drawn on top.
  238. """
  239. if not torch.jit.is_scripting() and not torch.jit.is_tracing():
  240. _log_api_usage_once(draw_segmentation_masks)
  241. if not isinstance(image, torch.Tensor):
  242. raise TypeError(f"The image must be a tensor, got {type(image)}")
  243. elif image.dtype != torch.uint8:
  244. raise ValueError(f"The image dtype must be uint8, got {image.dtype}")
  245. elif image.dim() != 3:
  246. raise ValueError("Pass individual images, not batches")
  247. elif image.size()[0] != 3:
  248. raise ValueError("Pass an RGB image. Other Image formats are not supported")
  249. if masks.ndim == 2:
  250. masks = masks[None, :, :]
  251. if masks.ndim != 3:
  252. raise ValueError("masks must be of shape (H, W) or (batch_size, H, W)")
  253. if masks.dtype != torch.bool:
  254. raise ValueError(f"The masks must be of dtype bool. Got {masks.dtype}")
  255. if masks.shape[-2:] != image.shape[-2:]:
  256. raise ValueError("The image and the masks must have the same height and width")
  257. num_masks = masks.size()[0]
  258. if num_masks == 0:
  259. warnings.warn("masks doesn't contain any mask. No mask was drawn")
  260. return image
  261. out_dtype = torch.uint8
  262. colors = [
  263. torch.tensor(color, dtype=out_dtype, device=image.device)
  264. for color in _parse_colors(colors, num_objects=num_masks)
  265. ]
  266. img_to_draw = image.detach().clone()
  267. # TODO: There might be a way to vectorize this
  268. for mask, color in zip(masks, colors):
  269. img_to_draw[:, mask] = color[:, None]
  270. out = image * (1 - alpha) + img_to_draw * alpha
  271. return out.to(out_dtype)
  272. @torch.no_grad()
  273. def draw_keypoints(
  274. image: torch.Tensor,
  275. keypoints: torch.Tensor,
  276. connectivity: Optional[List[Tuple[int, int]]] = None,
  277. colors: Optional[Union[str, Tuple[int, int, int]]] = None,
  278. radius: int = 2,
  279. width: int = 3,
  280. ) -> torch.Tensor:
  281. """
  282. Draws Keypoints on given RGB image.
  283. The values of the input image should be uint8 between 0 and 255.
  284. Args:
  285. image (Tensor): Tensor of shape (3, H, W) and dtype uint8.
  286. keypoints (Tensor): Tensor of shape (num_instances, K, 2) the K keypoints location for each of the N instances,
  287. in the format [x, y].
  288. connectivity (List[Tuple[int, int]]]): A List of tuple where,
  289. each tuple contains pair of keypoints to be connected.
  290. colors (str, Tuple): The color can be represented as
  291. PIL strings e.g. "red" or "#FF00FF", or as RGB tuples e.g. ``(240, 10, 157)``.
  292. radius (int): Integer denoting radius of keypoint.
  293. width (int): Integer denoting width of line connecting keypoints.
  294. Returns:
  295. img (Tensor[C, H, W]): Image Tensor of dtype uint8 with keypoints drawn.
  296. """
  297. if not torch.jit.is_scripting() and not torch.jit.is_tracing():
  298. _log_api_usage_once(draw_keypoints)
  299. if not isinstance(image, torch.Tensor):
  300. raise TypeError(f"The image must be a tensor, got {type(image)}")
  301. elif image.dtype != torch.uint8:
  302. raise ValueError(f"The image dtype must be uint8, got {image.dtype}")
  303. elif image.dim() != 3:
  304. raise ValueError("Pass individual images, not batches")
  305. elif image.size()[0] != 3:
  306. raise ValueError("Pass an RGB image. Other Image formats are not supported")
  307. if keypoints.ndim != 3:
  308. raise ValueError("keypoints must be of shape (num_instances, K, 2)")
  309. ndarr = image.permute(1, 2, 0).cpu().numpy()
  310. img_to_draw = Image.fromarray(ndarr)
  311. draw = ImageDraw.Draw(img_to_draw)
  312. img_kpts = keypoints.to(torch.int64).tolist()
  313. for kpt_id, kpt_inst in enumerate(img_kpts):
  314. for inst_id, kpt in enumerate(kpt_inst):
  315. x1 = kpt[0] - radius
  316. x2 = kpt[0] + radius
  317. y1 = kpt[1] - radius
  318. y2 = kpt[1] + radius
  319. draw.ellipse([x1, y1, x2, y2], fill=colors, outline=None, width=0)
  320. if connectivity:
  321. for connection in connectivity:
  322. start_pt_x = kpt_inst[connection[0]][0]
  323. start_pt_y = kpt_inst[connection[0]][1]
  324. end_pt_x = kpt_inst[connection[1]][0]
  325. end_pt_y = kpt_inst[connection[1]][1]
  326. draw.line(
  327. ((start_pt_x, start_pt_y), (end_pt_x, end_pt_y)),
  328. width=width,
  329. )
  330. return torch.from_numpy(np.array(img_to_draw)).permute(2, 0, 1).to(dtype=torch.uint8)
  331. # Flow visualization code adapted from https://github.com/tomrunia/OpticalFlow_Visualization
  332. @torch.no_grad()
  333. def flow_to_image(flow: torch.Tensor) -> torch.Tensor:
  334. """
  335. Converts a flow to an RGB image.
  336. Args:
  337. flow (Tensor): Flow of shape (N, 2, H, W) or (2, H, W) and dtype torch.float.
  338. Returns:
  339. img (Tensor): Image Tensor of dtype uint8 where each color corresponds
  340. to a given flow direction. Shape is (N, 3, H, W) or (3, H, W) depending on the input.
  341. """
  342. if flow.dtype != torch.float:
  343. raise ValueError(f"Flow should be of dtype torch.float, got {flow.dtype}.")
  344. orig_shape = flow.shape
  345. if flow.ndim == 3:
  346. flow = flow[None] # Add batch dim
  347. if flow.ndim != 4 or flow.shape[1] != 2:
  348. raise ValueError(f"Input flow should have shape (2, H, W) or (N, 2, H, W), got {orig_shape}.")
  349. max_norm = torch.sum(flow**2, dim=1).sqrt().max()
  350. epsilon = torch.finfo((flow).dtype).eps
  351. normalized_flow = flow / (max_norm + epsilon)
  352. img = _normalized_flow_to_image(normalized_flow)
  353. if len(orig_shape) == 3:
  354. img = img[0] # Remove batch dim
  355. return img
  356. @torch.no_grad()
  357. def _normalized_flow_to_image(normalized_flow: torch.Tensor) -> torch.Tensor:
  358. """
  359. Converts a batch of normalized flow to an RGB image.
  360. Args:
  361. normalized_flow (torch.Tensor): Normalized flow tensor of shape (N, 2, H, W)
  362. Returns:
  363. img (Tensor(N, 3, H, W)): Flow visualization image of dtype uint8.
  364. """
  365. N, _, H, W = normalized_flow.shape
  366. device = normalized_flow.device
  367. flow_image = torch.zeros((N, 3, H, W), dtype=torch.uint8, device=device)
  368. colorwheel = _make_colorwheel().to(device) # shape [55x3]
  369. num_cols = colorwheel.shape[0]
  370. norm = torch.sum(normalized_flow**2, dim=1).sqrt()
  371. a = torch.atan2(-normalized_flow[:, 1, :, :], -normalized_flow[:, 0, :, :]) / torch.pi
  372. fk = (a + 1) / 2 * (num_cols - 1)
  373. k0 = torch.floor(fk).to(torch.long)
  374. k1 = k0 + 1
  375. k1[k1 == num_cols] = 0
  376. f = fk - k0
  377. for c in range(colorwheel.shape[1]):
  378. tmp = colorwheel[:, c]
  379. col0 = tmp[k0] / 255.0
  380. col1 = tmp[k1] / 255.0
  381. col = (1 - f) * col0 + f * col1
  382. col = 1 - norm * (1 - col)
  383. flow_image[:, c, :, :] = torch.floor(255 * col)
  384. return flow_image
  385. def _make_colorwheel() -> torch.Tensor:
  386. """
  387. Generates a color wheel for optical flow visualization as presented in:
  388. Baker et al. "A Database and Evaluation Methodology for Optical Flow" (ICCV, 2007)
  389. URL: http://vision.middlebury.edu/flow/flowEval-iccv07.pdf.
  390. Returns:
  391. colorwheel (Tensor[55, 3]): Colorwheel Tensor.
  392. """
  393. RY = 15
  394. YG = 6
  395. GC = 4
  396. CB = 11
  397. BM = 13
  398. MR = 6
  399. ncols = RY + YG + GC + CB + BM + MR
  400. colorwheel = torch.zeros((ncols, 3))
  401. col = 0
  402. # RY
  403. colorwheel[0:RY, 0] = 255
  404. colorwheel[0:RY, 1] = torch.floor(255 * torch.arange(0, RY) / RY)
  405. col = col + RY
  406. # YG
  407. colorwheel[col : col + YG, 0] = 255 - torch.floor(255 * torch.arange(0, YG) / YG)
  408. colorwheel[col : col + YG, 1] = 255
  409. col = col + YG
  410. # GC
  411. colorwheel[col : col + GC, 1] = 255
  412. colorwheel[col : col + GC, 2] = torch.floor(255 * torch.arange(0, GC) / GC)
  413. col = col + GC
  414. # CB
  415. colorwheel[col : col + CB, 1] = 255 - torch.floor(255 * torch.arange(CB) / CB)
  416. colorwheel[col : col + CB, 2] = 255
  417. col = col + CB
  418. # BM
  419. colorwheel[col : col + BM, 2] = 255
  420. colorwheel[col : col + BM, 0] = torch.floor(255 * torch.arange(0, BM) / BM)
  421. col = col + BM
  422. # MR
  423. colorwheel[col : col + MR, 2] = 255 - torch.floor(255 * torch.arange(MR) / MR)
  424. colorwheel[col : col + MR, 0] = 255
  425. return colorwheel
  426. def _generate_color_palette(num_objects: int):
  427. palette = torch.tensor([2**25 - 1, 2**15 - 1, 2**21 - 1])
  428. return [tuple((i * palette) % 255) for i in range(num_objects)]
  429. def _parse_colors(
  430. colors: Union[None, str, Tuple[int, int, int], List[Union[str, Tuple[int, int, int]]]],
  431. *,
  432. num_objects: int,
  433. ) -> List[Tuple[int, int, int]]:
  434. """
  435. Parses a specification of colors for a set of objects.
  436. Args:
  437. colors: A specification of colors for the objects. This can be one of the following:
  438. - None: to generate a color palette automatically.
  439. - A list of colors: where each color is either a string (specifying a named color) or an RGB tuple.
  440. - A string or an RGB tuple: to use the same color for all objects.
  441. If `colors` is a tuple, it should be a 3-tuple specifying the RGB values of the color.
  442. If `colors` is a list, it should have at least as many elements as the number of objects to color.
  443. num_objects (int): The number of objects to color.
  444. Returns:
  445. A list of 3-tuples, specifying the RGB values of the colors.
  446. Raises:
  447. ValueError: If the number of colors in the list is less than the number of objects to color.
  448. If `colors` is not a list, tuple, string or None.
  449. """
  450. if colors is None:
  451. colors = _generate_color_palette(num_objects)
  452. elif isinstance(colors, list):
  453. if len(colors) < num_objects:
  454. raise ValueError(
  455. f"Number of colors must be equal or larger than the number of objects, but got {len(colors)} < {num_objects}."
  456. )
  457. elif not isinstance(colors, (tuple, str)):
  458. raise ValueError("`colors` must be a tuple or a string, or a list thereof, but got {colors}.")
  459. elif isinstance(colors, tuple) and len(colors) != 3:
  460. raise ValueError("If passed as tuple, colors should be an RGB triplet, but got {colors}.")
  461. else: # colors specifies a single color for all objects
  462. colors = [colors] * num_objects
  463. return [ImageColor.getrgb(color) if isinstance(color, str) else color for color in colors]
  464. def _log_api_usage_once(obj: Any) -> None:
  465. """
  466. Logs API usage(module and name) within an organization.
  467. In a large ecosystem, it's often useful to track the PyTorch and
  468. TorchVision APIs usage. This API provides the similar functionality to the
  469. logging module in the Python stdlib. It can be used for debugging purpose
  470. to log which methods are used and by default it is inactive, unless the user
  471. manually subscribes a logger via the `SetAPIUsageLogger method <https://github.com/pytorch/pytorch/blob/eb3b9fe719b21fae13c7a7cf3253f970290a573e/c10/util/Logging.cpp#L114>`_.
  472. Please note it is triggered only once for the same API call within a process.
  473. It does not collect any data from open-source users since it is no-op by default.
  474. For more information, please refer to
  475. * PyTorch note: https://pytorch.org/docs/stable/notes/large_scale_deployments.html#api-usage-logging;
  476. * Logging policy: https://github.com/pytorch/vision/issues/5052;
  477. Args:
  478. obj (class instance or method): an object to extract info from.
  479. """
  480. module = obj.__module__
  481. if not module.startswith("torchvision"):
  482. module = f"torchvision.internal.{module}"
  483. name = obj.__class__.__name__
  484. if isinstance(obj, FunctionType):
  485. name = obj.__name__
  486. torch._C._log_api_usage_once(f"{module}.{name}")
  487. def _make_ntuple(x: Any, n: int) -> Tuple[Any, ...]:
  488. """
  489. Make n-tuple from input x. If x is an iterable, then we just convert it to tuple.
  490. Otherwise, we will make a tuple of length n, all with value of x.
  491. reference: https://github.com/pytorch/pytorch/blob/master/torch/nn/modules/utils.py#L8
  492. Args:
  493. x (Any): input value
  494. n (int): length of the resulting tuple
  495. """
  496. if isinstance(x, collections.abc.Iterable):
  497. return tuple(x)
  498. return tuple(repeat(x, n))