123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985 |
- from functools import partial
- from typing import Any, Callable, List, Optional, Type, Union
- import torch
- import torch.nn as nn
- from torch import Tensor
- from ..transforms._presets import ImageClassification
- from ..utils import _log_api_usage_once
- from ._api import register_model, Weights, WeightsEnum
- from ._meta import _IMAGENET_CATEGORIES
- from ._utils import _ovewrite_named_param, handle_legacy_interface
- __all__ = [
- "ResNet",
- "ResNet18_Weights",
- "ResNet34_Weights",
- "ResNet50_Weights",
- "ResNet101_Weights",
- "ResNet152_Weights",
- "ResNeXt50_32X4D_Weights",
- "ResNeXt101_32X8D_Weights",
- "ResNeXt101_64X4D_Weights",
- "Wide_ResNet50_2_Weights",
- "Wide_ResNet101_2_Weights",
- "resnet18",
- "resnet34",
- "resnet50",
- "resnet101",
- "resnet152",
- "resnext50_32x4d",
- "resnext101_32x8d",
- "resnext101_64x4d",
- "wide_resnet50_2",
- "wide_resnet101_2",
- ]
- def conv3x3(in_planes: int, out_planes: int, stride: int = 1, groups: int = 1, dilation: int = 1) -> nn.Conv2d:
- """3x3 convolution with padding"""
- return nn.Conv2d(
- in_planes,
- out_planes,
- kernel_size=3,
- stride=stride,
- padding=dilation,
- groups=groups,
- bias=False,
- dilation=dilation,
- )
- def conv1x1(in_planes: int, out_planes: int, stride: int = 1) -> nn.Conv2d:
- """1x1 convolution"""
- return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
- class BasicBlock(nn.Module):
- expansion: int = 1
- def __init__(
- self,
- inplanes: int,
- planes: int,
- stride: int = 1,
- downsample: Optional[nn.Module] = None,
- groups: int = 1,
- base_width: int = 64,
- dilation: int = 1,
- norm_layer: Optional[Callable[..., nn.Module]] = None,
- ) -> None:
- super().__init__()
- if norm_layer is None:
- norm_layer = nn.BatchNorm2d
- if groups != 1 or base_width != 64:
- raise ValueError("BasicBlock only supports groups=1 and base_width=64")
- if dilation > 1:
- raise NotImplementedError("Dilation > 1 not supported in BasicBlock")
- # Both self.conv1 and self.downsample layers downsample the input when stride != 1
- self.conv1 = conv3x3(inplanes, planes, stride)
- self.bn1 = norm_layer(planes)
- self.relu = nn.ReLU(inplace=True)
- self.conv2 = conv3x3(planes, planes)
- self.bn2 = norm_layer(planes)
- self.downsample = downsample
- self.stride = stride
- def forward(self, x: Tensor) -> Tensor:
- identity = x
- out = self.conv1(x)
- out = self.bn1(out)
- out = self.relu(out)
- out = self.conv2(out)
- out = self.bn2(out)
- if self.downsample is not None:
- identity = self.downsample(x)
- out += identity
- out = self.relu(out)
- return out
- class Bottleneck(nn.Module):
- # Bottleneck in torchvision places the stride for downsampling at 3x3 convolution(self.conv2)
- # while original implementation places the stride at the first 1x1 convolution(self.conv1)
- # according to "Deep residual learning for image recognition" https://arxiv.org/abs/1512.03385.
- # This variant is also known as ResNet V1.5 and improves accuracy according to
- # https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch.
- expansion: int = 4
- def __init__(
- self,
- inplanes: int,
- planes: int,
- stride: int = 1,
- downsample: Optional[nn.Module] = None,
- groups: int = 1,
- base_width: int = 64,
- dilation: int = 1,
- norm_layer: Optional[Callable[..., nn.Module]] = None,
- ) -> None:
- super().__init__()
- if norm_layer is None:
- norm_layer = nn.BatchNorm2d
- width = int(planes * (base_width / 64.0)) * groups
- # Both self.conv2 and self.downsample layers downsample the input when stride != 1
- self.conv1 = conv1x1(inplanes, width)
- self.bn1 = norm_layer(width)
- self.conv2 = conv3x3(width, width, stride, groups, dilation)
- self.bn2 = norm_layer(width)
- self.conv3 = conv1x1(width, planes * self.expansion)
- self.bn3 = norm_layer(planes * self.expansion)
- self.relu = nn.ReLU(inplace=True)
- self.downsample = downsample
- self.stride = stride
- def forward(self, x: Tensor) -> Tensor:
- identity = x
- out = self.conv1(x)
- out = self.bn1(out)
- out = self.relu(out)
- out = self.conv2(out)
- out = self.bn2(out)
- out = self.relu(out)
- out = self.conv3(out)
- out = self.bn3(out)
- if self.downsample is not None:
- identity = self.downsample(x)
- out += identity
- out = self.relu(out)
- return out
- class ResNet(nn.Module):
- def __init__(
- self,
- block: Type[Union[BasicBlock, Bottleneck]],
- layers: List[int],
- num_classes: int = 1000,
- zero_init_residual: bool = False,
- groups: int = 1,
- width_per_group: int = 64,
- replace_stride_with_dilation: Optional[List[bool]] = None,
- norm_layer: Optional[Callable[..., nn.Module]] = None,
- ) -> None:
- super().__init__()
- _log_api_usage_once(self)
- if norm_layer is None:
- norm_layer = nn.BatchNorm2d
- self._norm_layer = norm_layer
- self.inplanes = 64
- self.dilation = 1
- if replace_stride_with_dilation is None:
- # each element in the tuple indicates if we should replace
- # the 2x2 stride with a dilated convolution instead
- replace_stride_with_dilation = [False, False, False]
- if len(replace_stride_with_dilation) != 3:
- raise ValueError(
- "replace_stride_with_dilation should be None "
- f"or a 3-element tuple, got {replace_stride_with_dilation}"
- )
- self.groups = groups
- self.base_width = width_per_group
- self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3, bias=False)
- self.bn1 = norm_layer(self.inplanes)
- self.relu = nn.ReLU(inplace=True)
- self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
- self.layer1 = self._make_layer(block, 64, layers[0])
- self.layer2 = self._make_layer(block, 128, layers[1], stride=2, dilate=replace_stride_with_dilation[0])
- self.layer3 = self._make_layer(block, 256, layers[2], stride=2, dilate=replace_stride_with_dilation[1])
- self.layer4 = self._make_layer(block, 512, layers[3], stride=2, dilate=replace_stride_with_dilation[2])
- self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
- self.fc = nn.Linear(512 * block.expansion, num_classes)
- for m in self.modules():
- if isinstance(m, nn.Conv2d):
- nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu")
- elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
- nn.init.constant_(m.weight, 1)
- nn.init.constant_(m.bias, 0)
- # Zero-initialize the last BN in each residual branch,
- # so that the residual branch starts with zeros, and each residual block behaves like an identity.
- # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
- if zero_init_residual:
- for m in self.modules():
- if isinstance(m, Bottleneck) and m.bn3.weight is not None:
- nn.init.constant_(m.bn3.weight, 0) # type: ignore[arg-type]
- elif isinstance(m, BasicBlock) and m.bn2.weight is not None:
- nn.init.constant_(m.bn2.weight, 0) # type: ignore[arg-type]
- def _make_layer(
- self,
- block: Type[Union[BasicBlock, Bottleneck]],
- planes: int,
- blocks: int,
- stride: int = 1,
- dilate: bool = False,
- ) -> nn.Sequential:
- norm_layer = self._norm_layer
- downsample = None
- previous_dilation = self.dilation
- if dilate:
- self.dilation *= stride
- stride = 1
- if stride != 1 or self.inplanes != planes * block.expansion:
- downsample = nn.Sequential(
- conv1x1(self.inplanes, planes * block.expansion, stride),
- norm_layer(planes * block.expansion),
- )
- layers = []
- layers.append(
- block(
- self.inplanes, planes, stride, downsample, self.groups, self.base_width, previous_dilation, norm_layer
- )
- )
- self.inplanes = planes * block.expansion
- for _ in range(1, blocks):
- layers.append(
- block(
- self.inplanes,
- planes,
- groups=self.groups,
- base_width=self.base_width,
- dilation=self.dilation,
- norm_layer=norm_layer,
- )
- )
- return nn.Sequential(*layers)
- def _forward_impl(self, x: Tensor) -> Tensor:
- # See note [TorchScript super()]
- x = self.conv1(x)
- x = self.bn1(x)
- x = self.relu(x)
- x = self.maxpool(x)
- x = self.layer1(x)
- x = self.layer2(x)
- x = self.layer3(x)
- x = self.layer4(x)
- x = self.avgpool(x)
- x = torch.flatten(x, 1)
- x = self.fc(x)
- return x
- def forward(self, x: Tensor) -> Tensor:
- return self._forward_impl(x)
- def _resnet(
- block: Type[Union[BasicBlock, Bottleneck]],
- layers: List[int],
- weights: Optional[WeightsEnum],
- progress: bool,
- **kwargs: Any,
- ) -> ResNet:
- if weights is not None:
- _ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"]))
- model = ResNet(block, layers, **kwargs)
- if weights is not None:
- model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True))
- return model
- _COMMON_META = {
- "min_size": (1, 1),
- "categories": _IMAGENET_CATEGORIES,
- }
- class ResNet18_Weights(WeightsEnum):
- IMAGENET1K_V1 = Weights(
- url="https://download.pytorch.org/models/resnet18-f37072fd.pth",
- transforms=partial(ImageClassification, crop_size=224),
- meta={
- **_COMMON_META,
- "num_params": 11689512,
- "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#resnet",
- "_metrics": {
- "ImageNet-1K": {
- "acc@1": 69.758,
- "acc@5": 89.078,
- }
- },
- "_ops": 1.814,
- "_file_size": 44.661,
- "_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""",
- },
- )
- DEFAULT = IMAGENET1K_V1
- class ResNet34_Weights(WeightsEnum):
- IMAGENET1K_V1 = Weights(
- url="https://download.pytorch.org/models/resnet34-b627a593.pth",
- transforms=partial(ImageClassification, crop_size=224),
- meta={
- **_COMMON_META,
- "num_params": 21797672,
- "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#resnet",
- "_metrics": {
- "ImageNet-1K": {
- "acc@1": 73.314,
- "acc@5": 91.420,
- }
- },
- "_ops": 3.664,
- "_file_size": 83.275,
- "_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""",
- },
- )
- DEFAULT = IMAGENET1K_V1
- class ResNet50_Weights(WeightsEnum):
- IMAGENET1K_V1 = Weights(
- url="https://download.pytorch.org/models/resnet50-0676ba61.pth",
- transforms=partial(ImageClassification, crop_size=224),
- meta={
- **_COMMON_META,
- "num_params": 25557032,
- "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#resnet",
- "_metrics": {
- "ImageNet-1K": {
- "acc@1": 76.130,
- "acc@5": 92.862,
- }
- },
- "_ops": 4.089,
- "_file_size": 97.781,
- "_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""",
- },
- )
- IMAGENET1K_V2 = Weights(
- url="https://download.pytorch.org/models/resnet50-11ad3fa6.pth",
- transforms=partial(ImageClassification, crop_size=224, resize_size=232),
- meta={
- **_COMMON_META,
- "num_params": 25557032,
- "recipe": "https://github.com/pytorch/vision/issues/3995#issuecomment-1013906621",
- "_metrics": {
- "ImageNet-1K": {
- "acc@1": 80.858,
- "acc@5": 95.434,
- }
- },
- "_ops": 4.089,
- "_file_size": 97.79,
- "_docs": """
- These weights improve upon the results of the original paper by using TorchVision's `new training recipe
- <https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_.
- """,
- },
- )
- DEFAULT = IMAGENET1K_V2
- class ResNet101_Weights(WeightsEnum):
- IMAGENET1K_V1 = Weights(
- url="https://download.pytorch.org/models/resnet101-63fe2227.pth",
- transforms=partial(ImageClassification, crop_size=224),
- meta={
- **_COMMON_META,
- "num_params": 44549160,
- "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#resnet",
- "_metrics": {
- "ImageNet-1K": {
- "acc@1": 77.374,
- "acc@5": 93.546,
- }
- },
- "_ops": 7.801,
- "_file_size": 170.511,
- "_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""",
- },
- )
- IMAGENET1K_V2 = Weights(
- url="https://download.pytorch.org/models/resnet101-cd907fc2.pth",
- transforms=partial(ImageClassification, crop_size=224, resize_size=232),
- meta={
- **_COMMON_META,
- "num_params": 44549160,
- "recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe",
- "_metrics": {
- "ImageNet-1K": {
- "acc@1": 81.886,
- "acc@5": 95.780,
- }
- },
- "_ops": 7.801,
- "_file_size": 170.53,
- "_docs": """
- These weights improve upon the results of the original paper by using TorchVision's `new training recipe
- <https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_.
- """,
- },
- )
- DEFAULT = IMAGENET1K_V2
- class ResNet152_Weights(WeightsEnum):
- IMAGENET1K_V1 = Weights(
- url="https://download.pytorch.org/models/resnet152-394f9c45.pth",
- transforms=partial(ImageClassification, crop_size=224),
- meta={
- **_COMMON_META,
- "num_params": 60192808,
- "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#resnet",
- "_metrics": {
- "ImageNet-1K": {
- "acc@1": 78.312,
- "acc@5": 94.046,
- }
- },
- "_ops": 11.514,
- "_file_size": 230.434,
- "_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""",
- },
- )
- IMAGENET1K_V2 = Weights(
- url="https://download.pytorch.org/models/resnet152-f82ba261.pth",
- transforms=partial(ImageClassification, crop_size=224, resize_size=232),
- meta={
- **_COMMON_META,
- "num_params": 60192808,
- "recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe",
- "_metrics": {
- "ImageNet-1K": {
- "acc@1": 82.284,
- "acc@5": 96.002,
- }
- },
- "_ops": 11.514,
- "_file_size": 230.474,
- "_docs": """
- These weights improve upon the results of the original paper by using TorchVision's `new training recipe
- <https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_.
- """,
- },
- )
- DEFAULT = IMAGENET1K_V2
- class ResNeXt50_32X4D_Weights(WeightsEnum):
- IMAGENET1K_V1 = Weights(
- url="https://download.pytorch.org/models/resnext50_32x4d-7cdf4587.pth",
- transforms=partial(ImageClassification, crop_size=224),
- meta={
- **_COMMON_META,
- "num_params": 25028904,
- "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#resnext",
- "_metrics": {
- "ImageNet-1K": {
- "acc@1": 77.618,
- "acc@5": 93.698,
- }
- },
- "_ops": 4.23,
- "_file_size": 95.789,
- "_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""",
- },
- )
- IMAGENET1K_V2 = Weights(
- url="https://download.pytorch.org/models/resnext50_32x4d-1a0047aa.pth",
- transforms=partial(ImageClassification, crop_size=224, resize_size=232),
- meta={
- **_COMMON_META,
- "num_params": 25028904,
- "recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe",
- "_metrics": {
- "ImageNet-1K": {
- "acc@1": 81.198,
- "acc@5": 95.340,
- }
- },
- "_ops": 4.23,
- "_file_size": 95.833,
- "_docs": """
- These weights improve upon the results of the original paper by using TorchVision's `new training recipe
- <https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_.
- """,
- },
- )
- DEFAULT = IMAGENET1K_V2
- class ResNeXt101_32X8D_Weights(WeightsEnum):
- IMAGENET1K_V1 = Weights(
- url="https://download.pytorch.org/models/resnext101_32x8d-8ba56ff5.pth",
- transforms=partial(ImageClassification, crop_size=224),
- meta={
- **_COMMON_META,
- "num_params": 88791336,
- "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#resnext",
- "_metrics": {
- "ImageNet-1K": {
- "acc@1": 79.312,
- "acc@5": 94.526,
- }
- },
- "_ops": 16.414,
- "_file_size": 339.586,
- "_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""",
- },
- )
- IMAGENET1K_V2 = Weights(
- url="https://download.pytorch.org/models/resnext101_32x8d-110c445d.pth",
- transforms=partial(ImageClassification, crop_size=224, resize_size=232),
- meta={
- **_COMMON_META,
- "num_params": 88791336,
- "recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe-with-fixres",
- "_metrics": {
- "ImageNet-1K": {
- "acc@1": 82.834,
- "acc@5": 96.228,
- }
- },
- "_ops": 16.414,
- "_file_size": 339.673,
- "_docs": """
- These weights improve upon the results of the original paper by using TorchVision's `new training recipe
- <https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_.
- """,
- },
- )
- DEFAULT = IMAGENET1K_V2
- class ResNeXt101_64X4D_Weights(WeightsEnum):
- IMAGENET1K_V1 = Weights(
- url="https://download.pytorch.org/models/resnext101_64x4d-173b62eb.pth",
- transforms=partial(ImageClassification, crop_size=224, resize_size=232),
- meta={
- **_COMMON_META,
- "num_params": 83455272,
- "recipe": "https://github.com/pytorch/vision/pull/5935",
- "_metrics": {
- "ImageNet-1K": {
- "acc@1": 83.246,
- "acc@5": 96.454,
- }
- },
- "_ops": 15.46,
- "_file_size": 319.318,
- "_docs": """
- These weights were trained from scratch by using TorchVision's `new training recipe
- <https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_.
- """,
- },
- )
- DEFAULT = IMAGENET1K_V1
- class Wide_ResNet50_2_Weights(WeightsEnum):
- IMAGENET1K_V1 = Weights(
- url="https://download.pytorch.org/models/wide_resnet50_2-95faca4d.pth",
- transforms=partial(ImageClassification, crop_size=224),
- meta={
- **_COMMON_META,
- "num_params": 68883240,
- "recipe": "https://github.com/pytorch/vision/pull/912#issue-445437439",
- "_metrics": {
- "ImageNet-1K": {
- "acc@1": 78.468,
- "acc@5": 94.086,
- }
- },
- "_ops": 11.398,
- "_file_size": 131.82,
- "_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""",
- },
- )
- IMAGENET1K_V2 = Weights(
- url="https://download.pytorch.org/models/wide_resnet50_2-9ba9bcbe.pth",
- transforms=partial(ImageClassification, crop_size=224, resize_size=232),
- meta={
- **_COMMON_META,
- "num_params": 68883240,
- "recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe-with-fixres",
- "_metrics": {
- "ImageNet-1K": {
- "acc@1": 81.602,
- "acc@5": 95.758,
- }
- },
- "_ops": 11.398,
- "_file_size": 263.124,
- "_docs": """
- These weights improve upon the results of the original paper by using TorchVision's `new training recipe
- <https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_.
- """,
- },
- )
- DEFAULT = IMAGENET1K_V2
- class Wide_ResNet101_2_Weights(WeightsEnum):
- IMAGENET1K_V1 = Weights(
- url="https://download.pytorch.org/models/wide_resnet101_2-32ee1156.pth",
- transforms=partial(ImageClassification, crop_size=224),
- meta={
- **_COMMON_META,
- "num_params": 126886696,
- "recipe": "https://github.com/pytorch/vision/pull/912#issue-445437439",
- "_metrics": {
- "ImageNet-1K": {
- "acc@1": 78.848,
- "acc@5": 94.284,
- }
- },
- "_ops": 22.753,
- "_file_size": 242.896,
- "_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""",
- },
- )
- IMAGENET1K_V2 = Weights(
- url="https://download.pytorch.org/models/wide_resnet101_2-d733dc28.pth",
- transforms=partial(ImageClassification, crop_size=224, resize_size=232),
- meta={
- **_COMMON_META,
- "num_params": 126886696,
- "recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe",
- "_metrics": {
- "ImageNet-1K": {
- "acc@1": 82.510,
- "acc@5": 96.020,
- }
- },
- "_ops": 22.753,
- "_file_size": 484.747,
- "_docs": """
- These weights improve upon the results of the original paper by using TorchVision's `new training recipe
- <https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_.
- """,
- },
- )
- DEFAULT = IMAGENET1K_V2
- @register_model()
- @handle_legacy_interface(weights=("pretrained", ResNet18_Weights.IMAGENET1K_V1))
- def resnet18(*, weights: Optional[ResNet18_Weights] = None, progress: bool = True, **kwargs: Any) -> ResNet:
- """ResNet-18 from `Deep Residual Learning for Image Recognition <https://arxiv.org/abs/1512.03385>`__.
- Args:
- weights (:class:`~torchvision.models.ResNet18_Weights`, optional): The
- pretrained weights to use. See
- :class:`~torchvision.models.ResNet18_Weights` below for
- more details, and possible values. By default, no pre-trained
- weights are used.
- progress (bool, optional): If True, displays a progress bar of the
- download to stderr. Default is True.
- **kwargs: parameters passed to the ``torchvision.models.resnet.ResNet``
- base class. Please refer to the `source code
- <https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py>`_
- for more details about this class.
- .. autoclass:: torchvision.models.ResNet18_Weights
- :members:
- """
- weights = ResNet18_Weights.verify(weights)
- return _resnet(BasicBlock, [2, 2, 2, 2], weights, progress, **kwargs)
- @register_model()
- @handle_legacy_interface(weights=("pretrained", ResNet34_Weights.IMAGENET1K_V1))
- def resnet34(*, weights: Optional[ResNet34_Weights] = None, progress: bool = True, **kwargs: Any) -> ResNet:
- """ResNet-34 from `Deep Residual Learning for Image Recognition <https://arxiv.org/abs/1512.03385>`__.
- Args:
- weights (:class:`~torchvision.models.ResNet34_Weights`, optional): The
- pretrained weights to use. See
- :class:`~torchvision.models.ResNet34_Weights` below for
- more details, and possible values. By default, no pre-trained
- weights are used.
- progress (bool, optional): If True, displays a progress bar of the
- download to stderr. Default is True.
- **kwargs: parameters passed to the ``torchvision.models.resnet.ResNet``
- base class. Please refer to the `source code
- <https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py>`_
- for more details about this class.
- .. autoclass:: torchvision.models.ResNet34_Weights
- :members:
- """
- weights = ResNet34_Weights.verify(weights)
- return _resnet(BasicBlock, [3, 4, 6, 3], weights, progress, **kwargs)
- @register_model()
- @handle_legacy_interface(weights=("pretrained", ResNet50_Weights.IMAGENET1K_V1))
- def resnet50(*, weights: Optional[ResNet50_Weights] = None, progress: bool = True, **kwargs: Any) -> ResNet:
- """ResNet-50 from `Deep Residual Learning for Image Recognition <https://arxiv.org/abs/1512.03385>`__.
- .. note::
- The bottleneck of TorchVision places the stride for downsampling to the second 3x3
- convolution while the original paper places it to the first 1x1 convolution.
- This variant improves the accuracy and is known as `ResNet V1.5
- <https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch>`_.
- Args:
- weights (:class:`~torchvision.models.ResNet50_Weights`, optional): The
- pretrained weights to use. See
- :class:`~torchvision.models.ResNet50_Weights` below for
- more details, and possible values. By default, no pre-trained
- weights are used.
- progress (bool, optional): If True, displays a progress bar of the
- download to stderr. Default is True.
- **kwargs: parameters passed to the ``torchvision.models.resnet.ResNet``
- base class. Please refer to the `source code
- <https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py>`_
- for more details about this class.
- .. autoclass:: torchvision.models.ResNet50_Weights
- :members:
- """
- weights = ResNet50_Weights.verify(weights)
- return _resnet(Bottleneck, [3, 4, 6, 3], weights, progress, **kwargs)
- @register_model()
- @handle_legacy_interface(weights=("pretrained", ResNet101_Weights.IMAGENET1K_V1))
- def resnet101(*, weights: Optional[ResNet101_Weights] = None, progress: bool = True, **kwargs: Any) -> ResNet:
- """ResNet-101 from `Deep Residual Learning for Image Recognition <https://arxiv.org/abs/1512.03385>`__.
- .. note::
- The bottleneck of TorchVision places the stride for downsampling to the second 3x3
- convolution while the original paper places it to the first 1x1 convolution.
- This variant improves the accuracy and is known as `ResNet V1.5
- <https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch>`_.
- Args:
- weights (:class:`~torchvision.models.ResNet101_Weights`, optional): The
- pretrained weights to use. See
- :class:`~torchvision.models.ResNet101_Weights` below for
- more details, and possible values. By default, no pre-trained
- weights are used.
- progress (bool, optional): If True, displays a progress bar of the
- download to stderr. Default is True.
- **kwargs: parameters passed to the ``torchvision.models.resnet.ResNet``
- base class. Please refer to the `source code
- <https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py>`_
- for more details about this class.
- .. autoclass:: torchvision.models.ResNet101_Weights
- :members:
- """
- weights = ResNet101_Weights.verify(weights)
- return _resnet(Bottleneck, [3, 4, 23, 3], weights, progress, **kwargs)
- @register_model()
- @handle_legacy_interface(weights=("pretrained", ResNet152_Weights.IMAGENET1K_V1))
- def resnet152(*, weights: Optional[ResNet152_Weights] = None, progress: bool = True, **kwargs: Any) -> ResNet:
- """ResNet-152 from `Deep Residual Learning for Image Recognition <https://arxiv.org/abs/1512.03385>`__.
- .. note::
- The bottleneck of TorchVision places the stride for downsampling to the second 3x3
- convolution while the original paper places it to the first 1x1 convolution.
- This variant improves the accuracy and is known as `ResNet V1.5
- <https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch>`_.
- Args:
- weights (:class:`~torchvision.models.ResNet152_Weights`, optional): The
- pretrained weights to use. See
- :class:`~torchvision.models.ResNet152_Weights` below for
- more details, and possible values. By default, no pre-trained
- weights are used.
- progress (bool, optional): If True, displays a progress bar of the
- download to stderr. Default is True.
- **kwargs: parameters passed to the ``torchvision.models.resnet.ResNet``
- base class. Please refer to the `source code
- <https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py>`_
- for more details about this class.
- .. autoclass:: torchvision.models.ResNet152_Weights
- :members:
- """
- weights = ResNet152_Weights.verify(weights)
- return _resnet(Bottleneck, [3, 8, 36, 3], weights, progress, **kwargs)
- @register_model()
- @handle_legacy_interface(weights=("pretrained", ResNeXt50_32X4D_Weights.IMAGENET1K_V1))
- def resnext50_32x4d(
- *, weights: Optional[ResNeXt50_32X4D_Weights] = None, progress: bool = True, **kwargs: Any
- ) -> ResNet:
- """ResNeXt-50 32x4d model from
- `Aggregated Residual Transformation for Deep Neural Networks <https://arxiv.org/abs/1611.05431>`_.
- Args:
- weights (:class:`~torchvision.models.ResNeXt50_32X4D_Weights`, optional): The
- pretrained weights to use. See
- :class:`~torchvision.models.ResNext50_32X4D_Weights` below for
- more details, and possible values. By default, no pre-trained
- weights are used.
- progress (bool, optional): If True, displays a progress bar of the
- download to stderr. Default is True.
- **kwargs: parameters passed to the ``torchvision.models.resnet.ResNet``
- base class. Please refer to the `source code
- <https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py>`_
- for more details about this class.
- .. autoclass:: torchvision.models.ResNeXt50_32X4D_Weights
- :members:
- """
- weights = ResNeXt50_32X4D_Weights.verify(weights)
- _ovewrite_named_param(kwargs, "groups", 32)
- _ovewrite_named_param(kwargs, "width_per_group", 4)
- return _resnet(Bottleneck, [3, 4, 6, 3], weights, progress, **kwargs)
- @register_model()
- @handle_legacy_interface(weights=("pretrained", ResNeXt101_32X8D_Weights.IMAGENET1K_V1))
- def resnext101_32x8d(
- *, weights: Optional[ResNeXt101_32X8D_Weights] = None, progress: bool = True, **kwargs: Any
- ) -> ResNet:
- """ResNeXt-101 32x8d model from
- `Aggregated Residual Transformation for Deep Neural Networks <https://arxiv.org/abs/1611.05431>`_.
- Args:
- weights (:class:`~torchvision.models.ResNeXt101_32X8D_Weights`, optional): The
- pretrained weights to use. See
- :class:`~torchvision.models.ResNeXt101_32X8D_Weights` below for
- more details, and possible values. By default, no pre-trained
- weights are used.
- progress (bool, optional): If True, displays a progress bar of the
- download to stderr. Default is True.
- **kwargs: parameters passed to the ``torchvision.models.resnet.ResNet``
- base class. Please refer to the `source code
- <https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py>`_
- for more details about this class.
- .. autoclass:: torchvision.models.ResNeXt101_32X8D_Weights
- :members:
- """
- weights = ResNeXt101_32X8D_Weights.verify(weights)
- _ovewrite_named_param(kwargs, "groups", 32)
- _ovewrite_named_param(kwargs, "width_per_group", 8)
- return _resnet(Bottleneck, [3, 4, 23, 3], weights, progress, **kwargs)
- @register_model()
- @handle_legacy_interface(weights=("pretrained", ResNeXt101_64X4D_Weights.IMAGENET1K_V1))
- def resnext101_64x4d(
- *, weights: Optional[ResNeXt101_64X4D_Weights] = None, progress: bool = True, **kwargs: Any
- ) -> ResNet:
- """ResNeXt-101 64x4d model from
- `Aggregated Residual Transformation for Deep Neural Networks <https://arxiv.org/abs/1611.05431>`_.
- Args:
- weights (:class:`~torchvision.models.ResNeXt101_64X4D_Weights`, optional): The
- pretrained weights to use. See
- :class:`~torchvision.models.ResNeXt101_64X4D_Weights` below for
- more details, and possible values. By default, no pre-trained
- weights are used.
- progress (bool, optional): If True, displays a progress bar of the
- download to stderr. Default is True.
- **kwargs: parameters passed to the ``torchvision.models.resnet.ResNet``
- base class. Please refer to the `source code
- <https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py>`_
- for more details about this class.
- .. autoclass:: torchvision.models.ResNeXt101_64X4D_Weights
- :members:
- """
- weights = ResNeXt101_64X4D_Weights.verify(weights)
- _ovewrite_named_param(kwargs, "groups", 64)
- _ovewrite_named_param(kwargs, "width_per_group", 4)
- return _resnet(Bottleneck, [3, 4, 23, 3], weights, progress, **kwargs)
- @register_model()
- @handle_legacy_interface(weights=("pretrained", Wide_ResNet50_2_Weights.IMAGENET1K_V1))
- def wide_resnet50_2(
- *, weights: Optional[Wide_ResNet50_2_Weights] = None, progress: bool = True, **kwargs: Any
- ) -> ResNet:
- """Wide ResNet-50-2 model from
- `Wide Residual Networks <https://arxiv.org/abs/1605.07146>`_.
- The model is the same as ResNet except for the bottleneck number of channels
- which is twice larger in every block. The number of channels in outer 1x1
- convolutions is the same, e.g. last block in ResNet-50 has 2048-512-2048
- channels, and in Wide ResNet-50-2 has 2048-1024-2048.
- Args:
- weights (:class:`~torchvision.models.Wide_ResNet50_2_Weights`, optional): The
- pretrained weights to use. See
- :class:`~torchvision.models.Wide_ResNet50_2_Weights` below for
- more details, and possible values. By default, no pre-trained
- weights are used.
- progress (bool, optional): If True, displays a progress bar of the
- download to stderr. Default is True.
- **kwargs: parameters passed to the ``torchvision.models.resnet.ResNet``
- base class. Please refer to the `source code
- <https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py>`_
- for more details about this class.
- .. autoclass:: torchvision.models.Wide_ResNet50_2_Weights
- :members:
- """
- weights = Wide_ResNet50_2_Weights.verify(weights)
- _ovewrite_named_param(kwargs, "width_per_group", 64 * 2)
- return _resnet(Bottleneck, [3, 4, 6, 3], weights, progress, **kwargs)
- @register_model()
- @handle_legacy_interface(weights=("pretrained", Wide_ResNet101_2_Weights.IMAGENET1K_V1))
- def wide_resnet101_2(
- *, weights: Optional[Wide_ResNet101_2_Weights] = None, progress: bool = True, **kwargs: Any
- ) -> ResNet:
- """Wide ResNet-101-2 model from
- `Wide Residual Networks <https://arxiv.org/abs/1605.07146>`_.
- The model is the same as ResNet except for the bottleneck number of channels
- which is twice larger in every block. The number of channels in outer 1x1
- convolutions is the same, e.g. last block in ResNet-101 has 2048-512-2048
- channels, and in Wide ResNet-101-2 has 2048-1024-2048.
- Args:
- weights (:class:`~torchvision.models.Wide_ResNet101_2_Weights`, optional): The
- pretrained weights to use. See
- :class:`~torchvision.models.Wide_ResNet101_2_Weights` below for
- more details, and possible values. By default, no pre-trained
- weights are used.
- progress (bool, optional): If True, displays a progress bar of the
- download to stderr. Default is True.
- **kwargs: parameters passed to the ``torchvision.models.resnet.ResNet``
- base class. Please refer to the `source code
- <https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py>`_
- for more details about this class.
- .. autoclass:: torchvision.models.Wide_ResNet101_2_Weights
- :members:
- """
- weights = Wide_ResNet101_2_Weights.verify(weights)
- _ovewrite_named_param(kwargs, "width_per_group", 64 * 2)
- return _resnet(Bottleneck, [3, 4, 23, 3], weights, progress, **kwargs)
|