123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129 |
- import os.path
- from typing import Any, Callable, Optional, Tuple
- import numpy as np
- from PIL import Image
- from .utils import check_integrity, download_url, verify_str_arg
- from .vision import VisionDataset
- class SVHN(VisionDataset):
- """`SVHN <http://ufldl.stanford.edu/housenumbers/>`_ Dataset.
- Note: The SVHN dataset assigns the label `10` to the digit `0`. However, in this Dataset,
- we assign the label `0` to the digit `0` to be compatible with PyTorch loss functions which
- expect the class labels to be in the range `[0, C-1]`
- .. warning::
- This class needs `scipy <https://docs.scipy.org/doc/>`_ to load data from `.mat` format.
- Args:
- root (string): Root directory of the dataset where the data is stored.
- split (string): One of {'train', 'test', 'extra'}.
- Accordingly dataset is selected. 'extra' is Extra training set.
- transform (callable, optional): A function/transform that takes in an PIL image
- and returns a transformed version. E.g, ``transforms.RandomCrop``
- target_transform (callable, optional): A function/transform that takes in the
- target and transforms it.
- download (bool, optional): If true, downloads the dataset from the internet and
- puts it in root directory. If dataset is already downloaded, it is not
- downloaded again.
- """
- split_list = {
- "train": [
- "http://ufldl.stanford.edu/housenumbers/train_32x32.mat",
- "train_32x32.mat",
- "e26dedcc434d2e4c54c9b2d4a06d8373",
- ],
- "test": [
- "http://ufldl.stanford.edu/housenumbers/test_32x32.mat",
- "test_32x32.mat",
- "eb5a983be6a315427106f1b164d9cef3",
- ],
- "extra": [
- "http://ufldl.stanford.edu/housenumbers/extra_32x32.mat",
- "extra_32x32.mat",
- "a93ce644f1a588dc4d68dda5feec44a7",
- ],
- }
- def __init__(
- self,
- root: str,
- split: str = "train",
- transform: Optional[Callable] = None,
- target_transform: Optional[Callable] = None,
- download: bool = False,
- ) -> None:
- super().__init__(root, transform=transform, target_transform=target_transform)
- self.split = verify_str_arg(split, "split", tuple(self.split_list.keys()))
- self.url = self.split_list[split][0]
- self.filename = self.split_list[split][1]
- self.file_md5 = self.split_list[split][2]
- if download:
- self.download()
- if not self._check_integrity():
- raise RuntimeError("Dataset not found or corrupted. You can use download=True to download it")
- # import here rather than at top of file because this is
- # an optional dependency for torchvision
- import scipy.io as sio
- # reading(loading) mat file as array
- loaded_mat = sio.loadmat(os.path.join(self.root, self.filename))
- self.data = loaded_mat["X"]
- # loading from the .mat file gives an np.ndarray of type np.uint8
- # converting to np.int64, so that we have a LongTensor after
- # the conversion from the numpy array
- # the squeeze is needed to obtain a 1D tensor
- self.labels = loaded_mat["y"].astype(np.int64).squeeze()
- # the svhn dataset assigns the class label "10" to the digit 0
- # this makes it inconsistent with several loss functions
- # which expect the class labels to be in the range [0, C-1]
- np.place(self.labels, self.labels == 10, 0)
- self.data = np.transpose(self.data, (3, 2, 0, 1))
- def __getitem__(self, index: int) -> Tuple[Any, Any]:
- """
- Args:
- index (int): Index
- Returns:
- tuple: (image, target) where target is index of the target class.
- """
- img, target = self.data[index], int(self.labels[index])
- # doing this so that it is consistent with all other datasets
- # to return a PIL Image
- img = Image.fromarray(np.transpose(img, (1, 2, 0)))
- if self.transform is not None:
- img = self.transform(img)
- if self.target_transform is not None:
- target = self.target_transform(target)
- return img, target
- def __len__(self) -> int:
- return len(self.data)
- def _check_integrity(self) -> bool:
- root = self.root
- md5 = self.split_list[self.split][2]
- fpath = os.path.join(root, self.filename)
- return check_integrity(fpath, md5)
- def download(self) -> None:
- md5 = self.split_list[self.split][2]
- download_url(self.url, self.root, self.filename, md5)
- def extra_repr(self) -> str:
- return "Split: {split}".format(**self.__dict__)
|