1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586 |
- from pathlib import Path
- from typing import Any, Callable, Optional, Tuple
- import PIL.Image
- from .folder import make_dataset
- from .utils import download_and_extract_archive, verify_str_arg
- from .vision import VisionDataset
- class RenderedSST2(VisionDataset):
- """`The Rendered SST2 Dataset <https://github.com/openai/CLIP/blob/main/data/rendered-sst2.md>`_.
- Rendered SST2 is an image classification dataset used to evaluate the models capability on optical
- character recognition. This dataset was generated by rendering sentences in the Standford Sentiment
- Treebank v2 dataset.
- This dataset contains two classes (positive and negative) and is divided in three splits: a train
- split containing 6920 images (3610 positive and 3310 negative), a validation split containing 872 images
- (444 positive and 428 negative), and a test split containing 1821 images (909 positive and 912 negative).
- Args:
- root (string): Root directory of the dataset.
- split (string, optional): The dataset split, supports ``"train"`` (default), `"val"` and ``"test"``.
- transform (callable, optional): A function/transform that takes in an PIL image and returns a transformed
- version. E.g, ``transforms.RandomCrop``.
- target_transform (callable, optional): A function/transform that takes in the target and transforms it.
- download (bool, optional): If True, downloads the dataset from the internet and
- puts it in root directory. If dataset is already downloaded, it is not
- downloaded again. Default is False.
- """
- _URL = "https://openaipublic.azureedge.net/clip/data/rendered-sst2.tgz"
- _MD5 = "2384d08e9dcfa4bd55b324e610496ee5"
- def __init__(
- self,
- root: str,
- split: str = "train",
- transform: Optional[Callable] = None,
- target_transform: Optional[Callable] = None,
- download: bool = False,
- ) -> None:
- super().__init__(root, transform=transform, target_transform=target_transform)
- self._split = verify_str_arg(split, "split", ("train", "val", "test"))
- self._split_to_folder = {"train": "train", "val": "valid", "test": "test"}
- self._base_folder = Path(self.root) / "rendered-sst2"
- self.classes = ["negative", "positive"]
- self.class_to_idx = {"negative": 0, "positive": 1}
- if download:
- self._download()
- if not self._check_exists():
- raise RuntimeError("Dataset not found. You can use download=True to download it")
- self._samples = make_dataset(str(self._base_folder / self._split_to_folder[self._split]), extensions=("png",))
- def __len__(self) -> int:
- return len(self._samples)
- def __getitem__(self, idx: int) -> Tuple[Any, Any]:
- image_file, label = self._samples[idx]
- image = PIL.Image.open(image_file).convert("RGB")
- if self.transform:
- image = self.transform(image)
- if self.target_transform:
- label = self.target_transform(label)
- return image, label
- def extra_repr(self) -> str:
- return f"split={self._split}"
- def _check_exists(self) -> bool:
- for class_label in set(self.classes):
- if not (self._base_folder / self._split_to_folder[self._split] / class_label).is_dir():
- return False
- return True
- def _download(self) -> None:
- if self._check_exists():
- return
- download_and_extract_archive(self._URL, download_root=self.root, md5=self._MD5)
|