123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475 |
- import csv
- import pathlib
- from typing import Any, Callable, Optional, Tuple
- import torch
- from PIL import Image
- from .utils import check_integrity, verify_str_arg
- from .vision import VisionDataset
- class FER2013(VisionDataset):
- """`FER2013
- <https://www.kaggle.com/c/challenges-in-representation-learning-facial-expression-recognition-challenge>`_ Dataset.
- Args:
- root (string): Root directory of dataset where directory
- ``root/fer2013`` exists.
- split (string, optional): The dataset split, supports ``"train"`` (default), or ``"test"``.
- transform (callable, optional): A function/transform that takes in an PIL image and returns a transformed
- version. E.g, ``transforms.RandomCrop``
- target_transform (callable, optional): A function/transform that takes in the target and transforms it.
- """
- _RESOURCES = {
- "train": ("train.csv", "3f0dfb3d3fd99c811a1299cb947e3131"),
- "test": ("test.csv", "b02c2298636a634e8c2faabbf3ea9a23"),
- }
- def __init__(
- self,
- root: str,
- split: str = "train",
- transform: Optional[Callable] = None,
- target_transform: Optional[Callable] = None,
- ) -> None:
- self._split = verify_str_arg(split, "split", self._RESOURCES.keys())
- super().__init__(root, transform=transform, target_transform=target_transform)
- base_folder = pathlib.Path(self.root) / "fer2013"
- file_name, md5 = self._RESOURCES[self._split]
- data_file = base_folder / file_name
- if not check_integrity(str(data_file), md5=md5):
- raise RuntimeError(
- f"{file_name} not found in {base_folder} or corrupted. "
- f"You can download it from "
- f"https://www.kaggle.com/c/challenges-in-representation-learning-facial-expression-recognition-challenge"
- )
- with open(data_file, "r", newline="") as file:
- self._samples = [
- (
- torch.tensor([int(idx) for idx in row["pixels"].split()], dtype=torch.uint8).reshape(48, 48),
- int(row["emotion"]) if "emotion" in row else None,
- )
- for row in csv.DictReader(file)
- ]
- def __len__(self) -> int:
- return len(self._samples)
- def __getitem__(self, idx: int) -> Tuple[Any, Any]:
- image_tensor, target = self._samples[idx]
- image = Image.fromarray(image_tensor.numpy())
- if self.transform is not None:
- image = self.transform(image)
- if self.target_transform is not None:
- target = self.target_transform(target)
- return image, target
- def extra_repr(self) -> str:
- return f"split={self._split}"
|