123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167 |
- import os.path
- import pickle
- from typing import Any, Callable, Optional, Tuple
- import numpy as np
- from PIL import Image
- from .utils import check_integrity, download_and_extract_archive
- from .vision import VisionDataset
- class CIFAR10(VisionDataset):
- """`CIFAR10 <https://www.cs.toronto.edu/~kriz/cifar.html>`_ Dataset.
- Args:
- root (string): Root directory of dataset where directory
- ``cifar-10-batches-py`` exists or will be saved to if download is set to True.
- train (bool, optional): If True, creates dataset from training set, otherwise
- creates from test set.
- transform (callable, optional): A function/transform that takes in an PIL image
- and returns a transformed version. E.g, ``transforms.RandomCrop``
- target_transform (callable, optional): A function/transform that takes in the
- target and transforms it.
- download (bool, optional): If true, downloads the dataset from the internet and
- puts it in root directory. If dataset is already downloaded, it is not
- downloaded again.
- """
- base_folder = "cifar-10-batches-py"
- url = "https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz"
- filename = "cifar-10-python.tar.gz"
- tgz_md5 = "c58f30108f718f92721af3b95e74349a"
- train_list = [
- ["data_batch_1", "c99cafc152244af753f735de768cd75f"],
- ["data_batch_2", "d4bba439e000b95fd0a9bffe97cbabec"],
- ["data_batch_3", "54ebc095f3ab1f0389bbae665268c751"],
- ["data_batch_4", "634d18415352ddfa80567beed471001a"],
- ["data_batch_5", "482c414d41f54cd18b22e5b47cb7c3cb"],
- ]
- test_list = [
- ["test_batch", "40351d587109b95175f43aff81a1287e"],
- ]
- meta = {
- "filename": "batches.meta",
- "key": "label_names",
- "md5": "5ff9c542aee3614f3951f8cda6e48888",
- }
- def __init__(
- self,
- root: str,
- train: bool = True,
- transform: Optional[Callable] = None,
- target_transform: Optional[Callable] = None,
- download: bool = False,
- ) -> None:
- super().__init__(root, transform=transform, target_transform=target_transform)
- self.train = train # training set or test set
- if download:
- self.download()
- if not self._check_integrity():
- raise RuntimeError("Dataset not found or corrupted. You can use download=True to download it")
- if self.train:
- downloaded_list = self.train_list
- else:
- downloaded_list = self.test_list
- self.data: Any = []
- self.targets = []
- # now load the picked numpy arrays
- for file_name, checksum in downloaded_list:
- file_path = os.path.join(self.root, self.base_folder, file_name)
- with open(file_path, "rb") as f:
- entry = pickle.load(f, encoding="latin1")
- self.data.append(entry["data"])
- if "labels" in entry:
- self.targets.extend(entry["labels"])
- else:
- self.targets.extend(entry["fine_labels"])
- self.data = np.vstack(self.data).reshape(-1, 3, 32, 32)
- self.data = self.data.transpose((0, 2, 3, 1)) # convert to HWC
- self._load_meta()
- def _load_meta(self) -> None:
- path = os.path.join(self.root, self.base_folder, self.meta["filename"])
- if not check_integrity(path, self.meta["md5"]):
- raise RuntimeError("Dataset metadata file not found or corrupted. You can use download=True to download it")
- with open(path, "rb") as infile:
- data = pickle.load(infile, encoding="latin1")
- self.classes = data[self.meta["key"]]
- self.class_to_idx = {_class: i for i, _class in enumerate(self.classes)}
- def __getitem__(self, index: int) -> Tuple[Any, Any]:
- """
- Args:
- index (int): Index
- Returns:
- tuple: (image, target) where target is index of the target class.
- """
- img, target = self.data[index], self.targets[index]
- # doing this so that it is consistent with all other datasets
- # to return a PIL Image
- img = Image.fromarray(img)
- if self.transform is not None:
- img = self.transform(img)
- if self.target_transform is not None:
- target = self.target_transform(target)
- return img, target
- def __len__(self) -> int:
- return len(self.data)
- def _check_integrity(self) -> bool:
- for filename, md5 in self.train_list + self.test_list:
- fpath = os.path.join(self.root, self.base_folder, filename)
- if not check_integrity(fpath, md5):
- return False
- return True
- def download(self) -> None:
- if self._check_integrity():
- print("Files already downloaded and verified")
- return
- download_and_extract_archive(self.url, self.root, filename=self.filename, md5=self.tgz_md5)
- def extra_repr(self) -> str:
- split = "Train" if self.train is True else "Test"
- return f"Split: {split}"
- class CIFAR100(CIFAR10):
- """`CIFAR100 <https://www.cs.toronto.edu/~kriz/cifar.html>`_ Dataset.
- This is a subclass of the `CIFAR10` Dataset.
- """
- base_folder = "cifar-100-python"
- url = "https://www.cs.toronto.edu/~kriz/cifar-100-python.tar.gz"
- filename = "cifar-100-python.tar.gz"
- tgz_md5 = "eb9058c3a382ffc7106e4002c42a8d85"
- train_list = [
- ["train", "16019d7e3df5f24257cddd939b257f8d"],
- ]
- test_list = [
- ["test", "f0ef6b0ae62326f3e7ffdfab6717acfc"],
- ]
- meta = {
- "filename": "meta",
- "key": "fine_label_names",
- "md5": "7973b15100ade9c7d40fb424638fde48",
- }
|