123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320 |
- from copy import deepcopy
- import pytest
- import torch
- from common_utils import assert_equal, make_bounding_boxes, make_image, make_segmentation_mask, make_video
- from PIL import Image
- from torchvision import tv_tensors
- @pytest.fixture(autouse=True)
- def restore_tensor_return_type():
- # This is for security, as we should already be restoring the default manually in each test anyway
- # (at least at the time of writing...)
- yield
- tv_tensors.set_return_type("Tensor")
- @pytest.mark.parametrize("data", [torch.rand(3, 32, 32), Image.new("RGB", (32, 32), color=123)])
- def test_image_instance(data):
- image = tv_tensors.Image(data)
- assert isinstance(image, torch.Tensor)
- assert image.ndim == 3 and image.shape[0] == 3
- @pytest.mark.parametrize("data", [torch.randint(0, 10, size=(1, 32, 32)), Image.new("L", (32, 32), color=2)])
- def test_mask_instance(data):
- mask = tv_tensors.Mask(data)
- assert isinstance(mask, torch.Tensor)
- assert mask.ndim == 3 and mask.shape[0] == 1
- @pytest.mark.parametrize("data", [torch.randint(0, 32, size=(5, 4)), [[0, 0, 5, 5], [2, 2, 7, 7]], [1, 2, 3, 4]])
- @pytest.mark.parametrize(
- "format", ["XYXY", "CXCYWH", tv_tensors.BoundingBoxFormat.XYXY, tv_tensors.BoundingBoxFormat.XYWH]
- )
- def test_bbox_instance(data, format):
- bboxes = tv_tensors.BoundingBoxes(data, format=format, canvas_size=(32, 32))
- assert isinstance(bboxes, torch.Tensor)
- assert bboxes.ndim == 2 and bboxes.shape[1] == 4
- if isinstance(format, str):
- format = tv_tensors.BoundingBoxFormat[(format.upper())]
- assert bboxes.format == format
- def test_bbox_dim_error():
- data_3d = [[[1, 2, 3, 4]]]
- with pytest.raises(ValueError, match="Expected a 1D or 2D tensor, got 3D"):
- tv_tensors.BoundingBoxes(data_3d, format="XYXY", canvas_size=(32, 32))
- @pytest.mark.parametrize(
- ("data", "input_requires_grad", "expected_requires_grad"),
- [
- ([[[0.0, 1.0], [0.0, 1.0]]], None, False),
- ([[[0.0, 1.0], [0.0, 1.0]]], False, False),
- ([[[0.0, 1.0], [0.0, 1.0]]], True, True),
- (torch.rand(3, 16, 16, requires_grad=False), None, False),
- (torch.rand(3, 16, 16, requires_grad=False), False, False),
- (torch.rand(3, 16, 16, requires_grad=False), True, True),
- (torch.rand(3, 16, 16, requires_grad=True), None, True),
- (torch.rand(3, 16, 16, requires_grad=True), False, False),
- (torch.rand(3, 16, 16, requires_grad=True), True, True),
- ],
- )
- def test_new_requires_grad(data, input_requires_grad, expected_requires_grad):
- tv_tensor = tv_tensors.Image(data, requires_grad=input_requires_grad)
- assert tv_tensor.requires_grad is expected_requires_grad
- @pytest.mark.parametrize("make_input", [make_image, make_bounding_boxes, make_segmentation_mask, make_video])
- def test_isinstance(make_input):
- assert isinstance(make_input(), torch.Tensor)
- def test_wrapping_no_copy():
- tensor = torch.rand(3, 16, 16)
- image = tv_tensors.Image(tensor)
- assert image.data_ptr() == tensor.data_ptr()
- @pytest.mark.parametrize("make_input", [make_image, make_bounding_boxes, make_segmentation_mask, make_video])
- def test_to_wrapping(make_input):
- dp = make_input()
- dp_to = dp.to(torch.float64)
- assert type(dp_to) is type(dp)
- assert dp_to.dtype is torch.float64
- @pytest.mark.parametrize("make_input", [make_image, make_bounding_boxes, make_segmentation_mask, make_video])
- @pytest.mark.parametrize("return_type", ["Tensor", "TVTensor"])
- def test_to_tv_tensor_reference(make_input, return_type):
- tensor = torch.rand((3, 16, 16), dtype=torch.float64)
- dp = make_input()
- with tv_tensors.set_return_type(return_type):
- tensor_to = tensor.to(dp)
- assert type(tensor_to) is (type(dp) if return_type == "TVTensor" else torch.Tensor)
- assert tensor_to.dtype is dp.dtype
- assert type(tensor) is torch.Tensor
- @pytest.mark.parametrize("make_input", [make_image, make_bounding_boxes, make_segmentation_mask, make_video])
- @pytest.mark.parametrize("return_type", ["Tensor", "TVTensor"])
- def test_clone_wrapping(make_input, return_type):
- dp = make_input()
- with tv_tensors.set_return_type(return_type):
- dp_clone = dp.clone()
- assert type(dp_clone) is type(dp)
- assert dp_clone.data_ptr() != dp.data_ptr()
- @pytest.mark.parametrize("make_input", [make_image, make_bounding_boxes, make_segmentation_mask, make_video])
- @pytest.mark.parametrize("return_type", ["Tensor", "TVTensor"])
- def test_requires_grad__wrapping(make_input, return_type):
- dp = make_input(dtype=torch.float)
- assert not dp.requires_grad
- with tv_tensors.set_return_type(return_type):
- dp_requires_grad = dp.requires_grad_(True)
- assert type(dp_requires_grad) is type(dp)
- assert dp.requires_grad
- assert dp_requires_grad.requires_grad
- @pytest.mark.parametrize("make_input", [make_image, make_bounding_boxes, make_segmentation_mask, make_video])
- @pytest.mark.parametrize("return_type", ["Tensor", "TVTensor"])
- def test_detach_wrapping(make_input, return_type):
- dp = make_input(dtype=torch.float).requires_grad_(True)
- with tv_tensors.set_return_type(return_type):
- dp_detached = dp.detach()
- assert type(dp_detached) is type(dp)
- @pytest.mark.parametrize("return_type", ["Tensor", "TVTensor"])
- def test_force_subclass_with_metadata(return_type):
- # Sanity checks for the ops in _FORCE_TORCHFUNCTION_SUBCLASS and tv_tensors with metadata
- # Largely the same as above, we additionally check that the metadata is preserved
- format, canvas_size = "XYXY", (32, 32)
- bbox = tv_tensors.BoundingBoxes([[0, 0, 5, 5], [2, 2, 7, 7]], format=format, canvas_size=canvas_size)
- tv_tensors.set_return_type(return_type)
- bbox = bbox.clone()
- if return_type == "TVTensor":
- assert bbox.format, bbox.canvas_size == (format, canvas_size)
- bbox = bbox.to(torch.float64)
- if return_type == "TVTensor":
- assert bbox.format, bbox.canvas_size == (format, canvas_size)
- bbox = bbox.detach()
- if return_type == "TVTensor":
- assert bbox.format, bbox.canvas_size == (format, canvas_size)
- assert not bbox.requires_grad
- bbox.requires_grad_(True)
- if return_type == "TVTensor":
- assert bbox.format, bbox.canvas_size == (format, canvas_size)
- assert bbox.requires_grad
- tv_tensors.set_return_type("tensor")
- @pytest.mark.parametrize("make_input", [make_image, make_bounding_boxes, make_segmentation_mask, make_video])
- @pytest.mark.parametrize("return_type", ["Tensor", "TVTensor"])
- def test_other_op_no_wrapping(make_input, return_type):
- dp = make_input()
- with tv_tensors.set_return_type(return_type):
- # any operation besides the ones listed in _FORCE_TORCHFUNCTION_SUBCLASS will do here
- output = dp * 2
- assert type(output) is (type(dp) if return_type == "TVTensor" else torch.Tensor)
- @pytest.mark.parametrize("make_input", [make_image, make_bounding_boxes, make_segmentation_mask, make_video])
- @pytest.mark.parametrize(
- "op",
- [
- lambda t: t.numpy(),
- lambda t: t.tolist(),
- lambda t: t.max(dim=-1),
- ],
- )
- def test_no_tensor_output_op_no_wrapping(make_input, op):
- dp = make_input()
- output = op(dp)
- assert type(output) is not type(dp)
- @pytest.mark.parametrize("make_input", [make_image, make_bounding_boxes, make_segmentation_mask, make_video])
- @pytest.mark.parametrize("return_type", ["Tensor", "TVTensor"])
- def test_inplace_op_no_wrapping(make_input, return_type):
- dp = make_input()
- original_type = type(dp)
- with tv_tensors.set_return_type(return_type):
- output = dp.add_(0)
- assert type(output) is (type(dp) if return_type == "TVTensor" else torch.Tensor)
- assert type(dp) is original_type
- @pytest.mark.parametrize("make_input", [make_image, make_bounding_boxes, make_segmentation_mask, make_video])
- def test_wrap(make_input):
- dp = make_input()
- # any operation besides the ones listed in _FORCE_TORCHFUNCTION_SUBCLASS will do here
- output = dp * 2
- dp_new = tv_tensors.wrap(output, like=dp)
- assert type(dp_new) is type(dp)
- assert dp_new.data_ptr() == output.data_ptr()
- @pytest.mark.parametrize("make_input", [make_image, make_bounding_boxes, make_segmentation_mask, make_video])
- @pytest.mark.parametrize("requires_grad", [False, True])
- def test_deepcopy(make_input, requires_grad):
- dp = make_input(dtype=torch.float)
- dp.requires_grad_(requires_grad)
- dp_deepcopied = deepcopy(dp)
- assert dp_deepcopied is not dp
- assert dp_deepcopied.data_ptr() != dp.data_ptr()
- assert_equal(dp_deepcopied, dp)
- assert type(dp_deepcopied) is type(dp)
- assert dp_deepcopied.requires_grad is requires_grad
- @pytest.mark.parametrize("make_input", [make_image, make_bounding_boxes, make_segmentation_mask, make_video])
- @pytest.mark.parametrize("return_type", ["Tensor", "TVTensor"])
- @pytest.mark.parametrize(
- "op",
- (
- lambda dp: dp + torch.rand(*dp.shape),
- lambda dp: torch.rand(*dp.shape) + dp,
- lambda dp: dp * torch.rand(*dp.shape),
- lambda dp: torch.rand(*dp.shape) * dp,
- lambda dp: dp + 3,
- lambda dp: 3 + dp,
- lambda dp: dp + dp,
- lambda dp: dp.sum(),
- lambda dp: dp.reshape(-1),
- lambda dp: dp.int(),
- lambda dp: torch.stack([dp, dp]),
- lambda dp: torch.chunk(dp, 2)[0],
- lambda dp: torch.unbind(dp)[0],
- ),
- )
- def test_usual_operations(make_input, return_type, op):
- dp = make_input()
- with tv_tensors.set_return_type(return_type):
- out = op(dp)
- assert type(out) is (type(dp) if return_type == "TVTensor" else torch.Tensor)
- if isinstance(dp, tv_tensors.BoundingBoxes) and return_type == "TVTensor":
- assert hasattr(out, "format")
- assert hasattr(out, "canvas_size")
- def test_subclasses():
- img = make_image()
- masks = make_segmentation_mask()
- with pytest.raises(TypeError, match="unsupported operand"):
- img + masks
- def test_set_return_type():
- img = make_image()
- assert type(img + 3) is torch.Tensor
- with tv_tensors.set_return_type("TVTensor"):
- assert type(img + 3) is tv_tensors.Image
- assert type(img + 3) is torch.Tensor
- tv_tensors.set_return_type("TVTensor")
- assert type(img + 3) is tv_tensors.Image
- with tv_tensors.set_return_type("tensor"):
- assert type(img + 3) is torch.Tensor
- with tv_tensors.set_return_type("TVTensor"):
- assert type(img + 3) is tv_tensors.Image
- tv_tensors.set_return_type("tensor")
- assert type(img + 3) is torch.Tensor
- assert type(img + 3) is torch.Tensor
- # Exiting a context manager will restore the return type as it was prior to entering it,
- # regardless of whether the "global" tv_tensors.set_return_type() was called within the context manager.
- assert type(img + 3) is tv_tensors.Image
- tv_tensors.set_return_type("tensor")
- def test_return_type_input():
- img = make_image()
- # Case-insensitive
- with tv_tensors.set_return_type("tvtensor"):
- assert type(img + 3) is tv_tensors.Image
- with pytest.raises(ValueError, match="return_type must be"):
- tv_tensors.set_return_type("typo")
- tv_tensors.set_return_type("tensor")
|