123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909 |
- import os
- import sys
- import warnings
- import numpy as np
- import PIL.Image
- import pytest
- import torch
- from common_utils import (
- _assert_approx_equal_tensor_to_pil,
- _assert_equal_tensor_to_pil,
- _create_data,
- _create_data_batch,
- assert_equal,
- cpu_and_cuda,
- float_dtypes,
- get_tmp_dir,
- int_dtypes,
- )
- from torchvision import transforms as T
- from torchvision.transforms import functional as F, InterpolationMode
- from torchvision.transforms.autoaugment import _apply_op
- NEAREST, NEAREST_EXACT, BILINEAR, BICUBIC = (
- InterpolationMode.NEAREST,
- InterpolationMode.NEAREST_EXACT,
- InterpolationMode.BILINEAR,
- InterpolationMode.BICUBIC,
- )
- def _test_transform_vs_scripted(transform, s_transform, tensor, msg=None):
- torch.manual_seed(12)
- out1 = transform(tensor)
- torch.manual_seed(12)
- out2 = s_transform(tensor)
- assert_equal(out1, out2, msg=msg)
- def _test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors, msg=None):
- torch.manual_seed(12)
- transformed_batch = transform(batch_tensors)
- for i in range(len(batch_tensors)):
- img_tensor = batch_tensors[i, ...]
- torch.manual_seed(12)
- transformed_img = transform(img_tensor)
- assert_equal(transformed_img, transformed_batch[i, ...], msg=msg)
- torch.manual_seed(12)
- s_transformed_batch = s_transform(batch_tensors)
- assert_equal(transformed_batch, s_transformed_batch, msg=msg)
- def _test_functional_op(f, device, channels=3, fn_kwargs=None, test_exact_match=True, **match_kwargs):
- fn_kwargs = fn_kwargs or {}
- tensor, pil_img = _create_data(height=10, width=10, channels=channels, device=device)
- transformed_tensor = f(tensor, **fn_kwargs)
- transformed_pil_img = f(pil_img, **fn_kwargs)
- if test_exact_match:
- _assert_equal_tensor_to_pil(transformed_tensor, transformed_pil_img, **match_kwargs)
- else:
- _assert_approx_equal_tensor_to_pil(transformed_tensor, transformed_pil_img, **match_kwargs)
- def _test_class_op(transform_cls, device, channels=3, meth_kwargs=None, test_exact_match=True, **match_kwargs):
- meth_kwargs = meth_kwargs or {}
- # test for class interface
- f = transform_cls(**meth_kwargs)
- scripted_fn = torch.jit.script(f)
- tensor, pil_img = _create_data(26, 34, channels, device=device)
- # set seed to reproduce the same transformation for tensor and PIL image
- torch.manual_seed(12)
- transformed_tensor = f(tensor)
- torch.manual_seed(12)
- transformed_pil_img = f(pil_img)
- if test_exact_match:
- _assert_equal_tensor_to_pil(transformed_tensor, transformed_pil_img, **match_kwargs)
- else:
- _assert_approx_equal_tensor_to_pil(transformed_tensor.float(), transformed_pil_img, **match_kwargs)
- torch.manual_seed(12)
- transformed_tensor_script = scripted_fn(tensor)
- assert_equal(transformed_tensor, transformed_tensor_script)
- batch_tensors = _create_data_batch(height=23, width=34, channels=channels, num_samples=4, device=device)
- _test_transform_vs_scripted_on_batch(f, scripted_fn, batch_tensors)
- with get_tmp_dir() as tmp_dir:
- scripted_fn.save(os.path.join(tmp_dir, f"t_{transform_cls.__name__}.pt"))
- def _test_op(func, method, device, channels=3, fn_kwargs=None, meth_kwargs=None, test_exact_match=True, **match_kwargs):
- _test_functional_op(func, device, channels, fn_kwargs, test_exact_match=test_exact_match, **match_kwargs)
- _test_class_op(method, device, channels, meth_kwargs, test_exact_match=test_exact_match, **match_kwargs)
- def _test_fn_save_load(fn, tmpdir):
- scripted_fn = torch.jit.script(fn)
- p = os.path.join(tmpdir, f"t_op_list_{getattr(fn, '__name__', fn.__class__.__name__)}.pt")
- scripted_fn.save(p)
- _ = torch.jit.load(p)
- @pytest.mark.parametrize("device", cpu_and_cuda())
- @pytest.mark.parametrize(
- "func,method,fn_kwargs,match_kwargs",
- [
- (F.hflip, T.RandomHorizontalFlip, None, {}),
- (F.vflip, T.RandomVerticalFlip, None, {}),
- (F.invert, T.RandomInvert, None, {}),
- (F.posterize, T.RandomPosterize, {"bits": 4}, {}),
- (F.solarize, T.RandomSolarize, {"threshold": 192.0}, {}),
- (F.adjust_sharpness, T.RandomAdjustSharpness, {"sharpness_factor": 2.0}, {}),
- (
- F.autocontrast,
- T.RandomAutocontrast,
- None,
- {"test_exact_match": False, "agg_method": "max", "tol": (1 + 1e-5), "allowed_percentage_diff": 0.05},
- ),
- (F.equalize, T.RandomEqualize, None, {}),
- ],
- )
- @pytest.mark.parametrize("channels", [1, 3])
- def test_random(func, method, device, channels, fn_kwargs, match_kwargs):
- _test_op(func, method, device, channels, fn_kwargs, fn_kwargs, **match_kwargs)
- @pytest.mark.parametrize("seed", range(10))
- @pytest.mark.parametrize("device", cpu_and_cuda())
- @pytest.mark.parametrize("channels", [1, 3])
- class TestColorJitter:
- @pytest.fixture(autouse=True)
- def set_random_seed(self, seed):
- torch.random.manual_seed(seed)
- @pytest.mark.parametrize("brightness", [0.1, 0.5, 1.0, 1.34, (0.3, 0.7), [0.4, 0.5]])
- def test_color_jitter_brightness(self, brightness, device, channels):
- tol = 1.0 + 1e-10
- meth_kwargs = {"brightness": brightness}
- _test_class_op(
- T.ColorJitter,
- meth_kwargs=meth_kwargs,
- test_exact_match=False,
- device=device,
- tol=tol,
- agg_method="max",
- channels=channels,
- )
- @pytest.mark.parametrize("contrast", [0.2, 0.5, 1.0, 1.5, (0.3, 0.7), [0.4, 0.5]])
- def test_color_jitter_contrast(self, contrast, device, channels):
- tol = 1.0 + 1e-10
- meth_kwargs = {"contrast": contrast}
- _test_class_op(
- T.ColorJitter,
- meth_kwargs=meth_kwargs,
- test_exact_match=False,
- device=device,
- tol=tol,
- agg_method="max",
- channels=channels,
- )
- @pytest.mark.parametrize("saturation", [0.5, 0.75, 1.0, 1.25, (0.3, 0.7), [0.3, 0.4]])
- def test_color_jitter_saturation(self, saturation, device, channels):
- tol = 1.0 + 1e-10
- meth_kwargs = {"saturation": saturation}
- _test_class_op(
- T.ColorJitter,
- meth_kwargs=meth_kwargs,
- test_exact_match=False,
- device=device,
- tol=tol,
- agg_method="max",
- channels=channels,
- )
- @pytest.mark.parametrize("hue", [0.2, 0.5, (-0.2, 0.3), [-0.4, 0.5]])
- def test_color_jitter_hue(self, hue, device, channels):
- meth_kwargs = {"hue": hue}
- _test_class_op(
- T.ColorJitter,
- meth_kwargs=meth_kwargs,
- test_exact_match=False,
- device=device,
- tol=16.1,
- agg_method="max",
- channels=channels,
- )
- def test_color_jitter_all(self, device, channels):
- # All 4 parameters together
- meth_kwargs = {"brightness": 0.2, "contrast": 0.2, "saturation": 0.2, "hue": 0.2}
- _test_class_op(
- T.ColorJitter,
- meth_kwargs=meth_kwargs,
- test_exact_match=False,
- device=device,
- tol=12.1,
- agg_method="max",
- channels=channels,
- )
- @pytest.mark.parametrize("device", cpu_and_cuda())
- @pytest.mark.parametrize("m", ["constant", "edge", "reflect", "symmetric"])
- @pytest.mark.parametrize("mul", [1, -1])
- def test_pad(m, mul, device):
- fill = 127 if m == "constant" else 0
- # Test functional.pad (PIL and Tensor) with padding as single int
- _test_functional_op(F.pad, fn_kwargs={"padding": mul * 2, "fill": fill, "padding_mode": m}, device=device)
- # Test functional.pad and transforms.Pad with padding as [int, ]
- fn_kwargs = meth_kwargs = {
- "padding": [mul * 2],
- "fill": fill,
- "padding_mode": m,
- }
- _test_op(F.pad, T.Pad, device=device, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs)
- # Test functional.pad and transforms.Pad with padding as list
- fn_kwargs = meth_kwargs = {"padding": [mul * 4, 4], "fill": fill, "padding_mode": m}
- _test_op(F.pad, T.Pad, device=device, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs)
- # Test functional.pad and transforms.Pad with padding as tuple
- fn_kwargs = meth_kwargs = {"padding": (mul * 2, 2, 2, mul * 2), "fill": fill, "padding_mode": m}
- _test_op(F.pad, T.Pad, device=device, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs)
- @pytest.mark.parametrize("device", cpu_and_cuda())
- def test_crop(device):
- fn_kwargs = {"top": 2, "left": 3, "height": 4, "width": 5}
- # Test transforms.RandomCrop with size and padding as tuple
- meth_kwargs = {
- "size": (4, 5),
- "padding": (4, 4),
- "pad_if_needed": True,
- }
- _test_op(F.crop, T.RandomCrop, device=device, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs)
- # Test transforms.functional.crop including outside the image area
- fn_kwargs = {"top": -2, "left": 3, "height": 4, "width": 5} # top
- _test_functional_op(F.crop, fn_kwargs=fn_kwargs, device=device)
- fn_kwargs = {"top": 1, "left": -3, "height": 4, "width": 5} # left
- _test_functional_op(F.crop, fn_kwargs=fn_kwargs, device=device)
- fn_kwargs = {"top": 7, "left": 3, "height": 4, "width": 5} # bottom
- _test_functional_op(F.crop, fn_kwargs=fn_kwargs, device=device)
- fn_kwargs = {"top": 3, "left": 8, "height": 4, "width": 5} # right
- _test_functional_op(F.crop, fn_kwargs=fn_kwargs, device=device)
- fn_kwargs = {"top": -3, "left": -3, "height": 15, "width": 15} # all
- _test_functional_op(F.crop, fn_kwargs=fn_kwargs, device=device)
- @pytest.mark.parametrize("device", cpu_and_cuda())
- @pytest.mark.parametrize(
- "padding_config",
- [
- {"padding_mode": "constant", "fill": 0},
- {"padding_mode": "constant", "fill": 10},
- {"padding_mode": "edge"},
- {"padding_mode": "reflect"},
- ],
- )
- @pytest.mark.parametrize("pad_if_needed", [True, False])
- @pytest.mark.parametrize("padding", [[5], [5, 4], [1, 2, 3, 4]])
- @pytest.mark.parametrize("size", [5, [5], [6, 6]])
- def test_random_crop(size, padding, pad_if_needed, padding_config, device):
- config = dict(padding_config)
- config["size"] = size
- config["padding"] = padding
- config["pad_if_needed"] = pad_if_needed
- _test_class_op(T.RandomCrop, device, meth_kwargs=config)
- def test_random_crop_save_load(tmpdir):
- fn = T.RandomCrop(32, [4], pad_if_needed=True)
- _test_fn_save_load(fn, tmpdir)
- @pytest.mark.parametrize("device", cpu_and_cuda())
- def test_center_crop(device, tmpdir):
- fn_kwargs = {"output_size": (4, 5)}
- meth_kwargs = {"size": (4, 5)}
- _test_op(F.center_crop, T.CenterCrop, device=device, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs)
- fn_kwargs = {"output_size": (5,)}
- meth_kwargs = {"size": (5,)}
- _test_op(F.center_crop, T.CenterCrop, device=device, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs)
- tensor = torch.randint(0, 256, (3, 10, 10), dtype=torch.uint8, device=device)
- # Test torchscript of transforms.CenterCrop with size as int
- f = T.CenterCrop(size=5)
- scripted_fn = torch.jit.script(f)
- scripted_fn(tensor)
- # Test torchscript of transforms.CenterCrop with size as [int, ]
- f = T.CenterCrop(size=[5])
- scripted_fn = torch.jit.script(f)
- scripted_fn(tensor)
- # Test torchscript of transforms.CenterCrop with size as tuple
- f = T.CenterCrop(size=(6, 6))
- scripted_fn = torch.jit.script(f)
- scripted_fn(tensor)
- def test_center_crop_save_load(tmpdir):
- fn = T.CenterCrop(size=[5])
- _test_fn_save_load(fn, tmpdir)
- @pytest.mark.parametrize("device", cpu_and_cuda())
- @pytest.mark.parametrize(
- "fn, method, out_length",
- [
- # test_five_crop
- (F.five_crop, T.FiveCrop, 5),
- # test_ten_crop
- (F.ten_crop, T.TenCrop, 10),
- ],
- )
- @pytest.mark.parametrize("size", [(5,), [5], (4, 5), [4, 5]])
- def test_x_crop(fn, method, out_length, size, device):
- meth_kwargs = fn_kwargs = {"size": size}
- scripted_fn = torch.jit.script(fn)
- tensor, pil_img = _create_data(height=20, width=20, device=device)
- transformed_t_list = fn(tensor, **fn_kwargs)
- transformed_p_list = fn(pil_img, **fn_kwargs)
- assert len(transformed_t_list) == len(transformed_p_list)
- assert len(transformed_t_list) == out_length
- for transformed_tensor, transformed_pil_img in zip(transformed_t_list, transformed_p_list):
- _assert_equal_tensor_to_pil(transformed_tensor, transformed_pil_img)
- transformed_t_list_script = scripted_fn(tensor.detach().clone(), **fn_kwargs)
- assert len(transformed_t_list) == len(transformed_t_list_script)
- assert len(transformed_t_list_script) == out_length
- for transformed_tensor, transformed_tensor_script in zip(transformed_t_list, transformed_t_list_script):
- assert_equal(transformed_tensor, transformed_tensor_script)
- # test for class interface
- fn = method(**meth_kwargs)
- scripted_fn = torch.jit.script(fn)
- output = scripted_fn(tensor)
- assert len(output) == len(transformed_t_list_script)
- # test on batch of tensors
- batch_tensors = _create_data_batch(height=23, width=34, channels=3, num_samples=4, device=device)
- torch.manual_seed(12)
- transformed_batch_list = fn(batch_tensors)
- for i in range(len(batch_tensors)):
- img_tensor = batch_tensors[i, ...]
- torch.manual_seed(12)
- transformed_img_list = fn(img_tensor)
- for transformed_img, transformed_batch in zip(transformed_img_list, transformed_batch_list):
- assert_equal(transformed_img, transformed_batch[i, ...])
- @pytest.mark.parametrize("method", ["FiveCrop", "TenCrop"])
- def test_x_crop_save_load(method, tmpdir):
- fn = getattr(T, method)(size=[5])
- _test_fn_save_load(fn, tmpdir)
- class TestResize:
- @pytest.mark.parametrize("size", [32, 34, 35, 36, 38])
- def test_resize_int(self, size):
- # TODO: Minimal check for bug-fix, improve this later
- x = torch.rand(3, 32, 46)
- t = T.Resize(size=size, antialias=True)
- y = t(x)
- # If size is an int, smaller edge of the image will be matched to this number.
- # i.e, if height > width, then image will be rescaled to (size * height / width, size).
- assert isinstance(y, torch.Tensor)
- assert y.shape[1] == size
- assert y.shape[2] == int(size * 46 / 32)
- @pytest.mark.parametrize("device", cpu_and_cuda())
- @pytest.mark.parametrize("dt", [None, torch.float32, torch.float64])
- @pytest.mark.parametrize("size", [[32], [32, 32], (32, 32), [34, 35]])
- @pytest.mark.parametrize("max_size", [None, 35, 1000])
- @pytest.mark.parametrize("interpolation", [BILINEAR, BICUBIC, NEAREST, NEAREST_EXACT])
- def test_resize_scripted(self, dt, size, max_size, interpolation, device):
- tensor, _ = _create_data(height=34, width=36, device=device)
- batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=device)
- if dt is not None:
- # This is a trivial cast to float of uint8 data to test all cases
- tensor = tensor.to(dt)
- if max_size is not None and len(size) != 1:
- pytest.skip("Size should be an int or a sequence of length 1 if max_size is specified")
- transform = T.Resize(size=size, interpolation=interpolation, max_size=max_size, antialias=True)
- s_transform = torch.jit.script(transform)
- _test_transform_vs_scripted(transform, s_transform, tensor)
- _test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)
- def test_resize_save_load(self, tmpdir):
- fn = T.Resize(size=[32], antialias=True)
- _test_fn_save_load(fn, tmpdir)
- @pytest.mark.parametrize("device", cpu_and_cuda())
- @pytest.mark.parametrize("scale", [(0.7, 1.2), [0.7, 1.2]])
- @pytest.mark.parametrize("ratio", [(0.75, 1.333), [0.75, 1.333]])
- @pytest.mark.parametrize("size", [(32,), [44], [32], [32, 32], (32, 32), [44, 55]])
- @pytest.mark.parametrize("interpolation", [NEAREST, BILINEAR, BICUBIC, NEAREST_EXACT])
- @pytest.mark.parametrize("antialias", [None, True, False])
- def test_resized_crop(self, scale, ratio, size, interpolation, antialias, device):
- if antialias and interpolation in {NEAREST, NEAREST_EXACT}:
- pytest.skip(f"Can not resize if interpolation mode is {interpolation} and antialias=True")
- tensor = torch.randint(0, 256, size=(3, 44, 56), dtype=torch.uint8, device=device)
- batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=device)
- transform = T.RandomResizedCrop(
- size=size, scale=scale, ratio=ratio, interpolation=interpolation, antialias=antialias
- )
- s_transform = torch.jit.script(transform)
- _test_transform_vs_scripted(transform, s_transform, tensor)
- _test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)
- def test_resized_crop_save_load(self, tmpdir):
- fn = T.RandomResizedCrop(size=[32], antialias=True)
- _test_fn_save_load(fn, tmpdir)
- def test_antialias_default_warning(self):
- img = torch.randint(0, 256, size=(3, 44, 56), dtype=torch.uint8)
- match = "The default value of the antialias"
- with pytest.warns(UserWarning, match=match):
- T.Resize((20, 20))(img)
- with pytest.warns(UserWarning, match=match):
- T.RandomResizedCrop((20, 20))(img)
- # For modes that aren't bicubic or bilinear, don't throw a warning
- with warnings.catch_warnings():
- warnings.simplefilter("error")
- T.Resize((20, 20), interpolation=NEAREST)(img)
- T.RandomResizedCrop((20, 20), interpolation=NEAREST)(img)
- def _test_random_affine_helper(device, **kwargs):
- tensor = torch.randint(0, 256, size=(3, 44, 56), dtype=torch.uint8, device=device)
- batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=device)
- transform = T.RandomAffine(**kwargs)
- s_transform = torch.jit.script(transform)
- _test_transform_vs_scripted(transform, s_transform, tensor)
- _test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)
- def test_random_affine_save_load(tmpdir):
- fn = T.RandomAffine(degrees=45.0)
- _test_fn_save_load(fn, tmpdir)
- @pytest.mark.parametrize("device", cpu_and_cuda())
- @pytest.mark.parametrize("interpolation", [NEAREST, BILINEAR])
- @pytest.mark.parametrize("shear", [15, 10.0, (5.0, 10.0), [-15, 15], [-10.0, 10.0, -11.0, 11.0]])
- def test_random_affine_shear(device, interpolation, shear):
- _test_random_affine_helper(device, degrees=0.0, interpolation=interpolation, shear=shear)
- @pytest.mark.parametrize("device", cpu_and_cuda())
- @pytest.mark.parametrize("interpolation", [NEAREST, BILINEAR])
- @pytest.mark.parametrize("scale", [(0.7, 1.2), [0.7, 1.2]])
- def test_random_affine_scale(device, interpolation, scale):
- _test_random_affine_helper(device, degrees=0.0, interpolation=interpolation, scale=scale)
- @pytest.mark.parametrize("device", cpu_and_cuda())
- @pytest.mark.parametrize("interpolation", [NEAREST, BILINEAR])
- @pytest.mark.parametrize("translate", [(0.1, 0.2), [0.2, 0.1]])
- def test_random_affine_translate(device, interpolation, translate):
- _test_random_affine_helper(device, degrees=0.0, interpolation=interpolation, translate=translate)
- @pytest.mark.parametrize("device", cpu_and_cuda())
- @pytest.mark.parametrize("interpolation", [NEAREST, BILINEAR])
- @pytest.mark.parametrize("degrees", [45, 35.0, (-45, 45), [-90.0, 90.0]])
- def test_random_affine_degrees(device, interpolation, degrees):
- _test_random_affine_helper(device, degrees=degrees, interpolation=interpolation)
- @pytest.mark.parametrize("device", cpu_and_cuda())
- @pytest.mark.parametrize("interpolation", [NEAREST, BILINEAR])
- @pytest.mark.parametrize("fill", [85, (10, -10, 10), 0.7, [0.0, 0.0, 0.0], [1], 1])
- def test_random_affine_fill(device, interpolation, fill):
- _test_random_affine_helper(device, degrees=0.0, interpolation=interpolation, fill=fill)
- @pytest.mark.parametrize("device", cpu_and_cuda())
- @pytest.mark.parametrize("center", [(0, 0), [10, 10], None, (56, 44)])
- @pytest.mark.parametrize("expand", [True, False])
- @pytest.mark.parametrize("degrees", [45, 35.0, (-45, 45), [-90.0, 90.0]])
- @pytest.mark.parametrize("interpolation", [NEAREST, BILINEAR])
- @pytest.mark.parametrize("fill", [85, (10, -10, 10), 0.7, [0.0, 0.0, 0.0], [1], 1])
- def test_random_rotate(device, center, expand, degrees, interpolation, fill):
- tensor = torch.randint(0, 256, size=(3, 44, 56), dtype=torch.uint8, device=device)
- batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=device)
- transform = T.RandomRotation(degrees=degrees, interpolation=interpolation, expand=expand, center=center, fill=fill)
- s_transform = torch.jit.script(transform)
- _test_transform_vs_scripted(transform, s_transform, tensor)
- _test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)
- def test_random_rotate_save_load(tmpdir):
- fn = T.RandomRotation(degrees=45.0)
- _test_fn_save_load(fn, tmpdir)
- @pytest.mark.parametrize("device", cpu_and_cuda())
- @pytest.mark.parametrize("distortion_scale", np.linspace(0.1, 1.0, num=20))
- @pytest.mark.parametrize("interpolation", [NEAREST, BILINEAR])
- @pytest.mark.parametrize("fill", [85, (10, -10, 10), 0.7, [0.0, 0.0, 0.0], [1], 1])
- def test_random_perspective(device, distortion_scale, interpolation, fill):
- tensor = torch.randint(0, 256, size=(3, 44, 56), dtype=torch.uint8, device=device)
- batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=device)
- transform = T.RandomPerspective(distortion_scale=distortion_scale, interpolation=interpolation, fill=fill)
- s_transform = torch.jit.script(transform)
- _test_transform_vs_scripted(transform, s_transform, tensor)
- _test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)
- def test_random_perspective_save_load(tmpdir):
- fn = T.RandomPerspective()
- _test_fn_save_load(fn, tmpdir)
- @pytest.mark.parametrize("device", cpu_and_cuda())
- @pytest.mark.parametrize(
- "Klass, meth_kwargs",
- [(T.Grayscale, {"num_output_channels": 1}), (T.Grayscale, {"num_output_channels": 3}), (T.RandomGrayscale, {})],
- )
- def test_to_grayscale(device, Klass, meth_kwargs):
- tol = 1.0 + 1e-10
- _test_class_op(Klass, meth_kwargs=meth_kwargs, test_exact_match=False, device=device, tol=tol, agg_method="max")
- @pytest.mark.parametrize("device", cpu_and_cuda())
- @pytest.mark.parametrize("in_dtype", int_dtypes() + float_dtypes())
- @pytest.mark.parametrize("out_dtype", int_dtypes() + float_dtypes())
- def test_convert_image_dtype(device, in_dtype, out_dtype):
- tensor, _ = _create_data(26, 34, device=device)
- batch_tensors = torch.rand(4, 3, 44, 56, device=device)
- in_tensor = tensor.to(in_dtype)
- in_batch_tensors = batch_tensors.to(in_dtype)
- fn = T.ConvertImageDtype(dtype=out_dtype)
- scripted_fn = torch.jit.script(fn)
- if (in_dtype == torch.float32 and out_dtype in (torch.int32, torch.int64)) or (
- in_dtype == torch.float64 and out_dtype == torch.int64
- ):
- with pytest.raises(RuntimeError, match=r"cannot be performed safely"):
- _test_transform_vs_scripted(fn, scripted_fn, in_tensor)
- with pytest.raises(RuntimeError, match=r"cannot be performed safely"):
- _test_transform_vs_scripted_on_batch(fn, scripted_fn, in_batch_tensors)
- return
- _test_transform_vs_scripted(fn, scripted_fn, in_tensor)
- _test_transform_vs_scripted_on_batch(fn, scripted_fn, in_batch_tensors)
- def test_convert_image_dtype_save_load(tmpdir):
- fn = T.ConvertImageDtype(dtype=torch.uint8)
- _test_fn_save_load(fn, tmpdir)
- @pytest.mark.parametrize("device", cpu_and_cuda())
- @pytest.mark.parametrize("policy", [policy for policy in T.AutoAugmentPolicy])
- @pytest.mark.parametrize("fill", [None, 85, (10, -10, 10), 0.7, [0.0, 0.0, 0.0], [1], 1])
- def test_autoaugment(device, policy, fill):
- tensor = torch.randint(0, 256, size=(3, 44, 56), dtype=torch.uint8, device=device)
- batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=device)
- transform = T.AutoAugment(policy=policy, fill=fill)
- s_transform = torch.jit.script(transform)
- for _ in range(25):
- _test_transform_vs_scripted(transform, s_transform, tensor)
- _test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)
- @pytest.mark.parametrize("device", cpu_and_cuda())
- @pytest.mark.parametrize("num_ops", [1, 2, 3])
- @pytest.mark.parametrize("magnitude", [7, 9, 11])
- @pytest.mark.parametrize("fill", [None, 85, (10, -10, 10), 0.7, [0.0, 0.0, 0.0], [1], 1])
- def test_randaugment(device, num_ops, magnitude, fill):
- tensor = torch.randint(0, 256, size=(3, 44, 56), dtype=torch.uint8, device=device)
- batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=device)
- transform = T.RandAugment(num_ops=num_ops, magnitude=magnitude, fill=fill)
- s_transform = torch.jit.script(transform)
- for _ in range(25):
- _test_transform_vs_scripted(transform, s_transform, tensor)
- _test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)
- @pytest.mark.parametrize("device", cpu_and_cuda())
- @pytest.mark.parametrize("fill", [None, 85, (10, -10, 10), 0.7, [0.0, 0.0, 0.0], [1], 1])
- def test_trivialaugmentwide(device, fill):
- tensor = torch.randint(0, 256, size=(3, 44, 56), dtype=torch.uint8, device=device)
- batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=device)
- transform = T.TrivialAugmentWide(fill=fill)
- s_transform = torch.jit.script(transform)
- for _ in range(25):
- _test_transform_vs_scripted(transform, s_transform, tensor)
- _test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)
- @pytest.mark.parametrize("device", cpu_and_cuda())
- @pytest.mark.parametrize("fill", [None, 85, (10, -10, 10), 0.7, [0.0, 0.0, 0.0], [1], 1])
- def test_augmix(device, fill):
- tensor = torch.randint(0, 256, size=(3, 44, 56), dtype=torch.uint8, device=device)
- batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=device)
- class DeterministicAugMix(T.AugMix):
- def _sample_dirichlet(self, params: torch.Tensor) -> torch.Tensor:
- # patch the method to ensure that the order of rand calls doesn't affect the outcome
- return params.softmax(dim=-1)
- transform = DeterministicAugMix(fill=fill)
- s_transform = torch.jit.script(transform)
- for _ in range(25):
- _test_transform_vs_scripted(transform, s_transform, tensor)
- _test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)
- @pytest.mark.parametrize("augmentation", [T.AutoAugment, T.RandAugment, T.TrivialAugmentWide, T.AugMix])
- def test_autoaugment_save_load(augmentation, tmpdir):
- fn = augmentation()
- _test_fn_save_load(fn, tmpdir)
- @pytest.mark.parametrize("interpolation", [F.InterpolationMode.NEAREST, F.InterpolationMode.BILINEAR])
- @pytest.mark.parametrize("mode", ["X", "Y"])
- def test_autoaugment__op_apply_shear(interpolation, mode):
- # We check that torchvision's implementation of shear is equivalent
- # to official CIFAR10 autoaugment implementation:
- # https://github.com/tensorflow/models/blob/885fda091c46c59d6c7bb5c7e760935eacc229da/research/autoaugment/augmentation_transforms.py#L273-L290
- image_size = 32
- def shear(pil_img, level, mode, resample):
- if mode == "X":
- matrix = (1, level, 0, 0, 1, 0)
- elif mode == "Y":
- matrix = (1, 0, 0, level, 1, 0)
- return pil_img.transform((image_size, image_size), PIL.Image.AFFINE, matrix, resample=resample)
- t_img, pil_img = _create_data(image_size, image_size)
- resample_pil = {
- F.InterpolationMode.NEAREST: PIL.Image.NEAREST,
- F.InterpolationMode.BILINEAR: PIL.Image.BILINEAR,
- }[interpolation]
- level = 0.3
- expected_out = shear(pil_img, level, mode=mode, resample=resample_pil)
- # Check pil output vs expected pil
- out = _apply_op(pil_img, op_name=f"Shear{mode}", magnitude=level, interpolation=interpolation, fill=0)
- assert out == expected_out
- if interpolation == F.InterpolationMode.BILINEAR:
- # We skip bilinear mode for tensors as
- # affine transformation results are not exactly the same
- # between tensors and pil images
- # MAE as around 1.40
- # Max Abs error can be 163 or 170
- return
- # Check tensor output vs expected pil
- out = _apply_op(t_img, op_name=f"Shear{mode}", magnitude=level, interpolation=interpolation, fill=0)
- _assert_approx_equal_tensor_to_pil(out, expected_out)
- @pytest.mark.parametrize("device", cpu_and_cuda())
- @pytest.mark.parametrize(
- "config",
- [
- {},
- {"value": 1},
- {"value": 0.2},
- {"value": "random"},
- {"value": (1, 1, 1)},
- {"value": (0.2, 0.2, 0.2)},
- {"value": [1, 1, 1]},
- {"value": [0.2, 0.2, 0.2]},
- {"value": "random", "ratio": (0.1, 0.2)},
- ],
- )
- def test_random_erasing(device, config):
- tensor, _ = _create_data(24, 32, channels=3, device=device)
- batch_tensors = torch.rand(4, 3, 44, 56, device=device)
- fn = T.RandomErasing(**config)
- scripted_fn = torch.jit.script(fn)
- _test_transform_vs_scripted(fn, scripted_fn, tensor)
- _test_transform_vs_scripted_on_batch(fn, scripted_fn, batch_tensors)
- def test_random_erasing_save_load(tmpdir):
- fn = T.RandomErasing(value=0.2)
- _test_fn_save_load(fn, tmpdir)
- def test_random_erasing_with_invalid_data():
- img = torch.rand(3, 60, 60)
- # Test Set 0: invalid value
- random_erasing = T.RandomErasing(value=(0.1, 0.2, 0.3, 0.4), p=1.0)
- with pytest.raises(ValueError, match="If value is a sequence, it should have either a single value or 3"):
- random_erasing(img)
- @pytest.mark.parametrize("device", cpu_and_cuda())
- def test_normalize(device, tmpdir):
- fn = T.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
- tensor, _ = _create_data(26, 34, device=device)
- with pytest.raises(TypeError, match="Input tensor should be a float tensor"):
- fn(tensor)
- batch_tensors = torch.rand(4, 3, 44, 56, device=device)
- tensor = tensor.to(dtype=torch.float32) / 255.0
- # test for class interface
- scripted_fn = torch.jit.script(fn)
- _test_transform_vs_scripted(fn, scripted_fn, tensor)
- _test_transform_vs_scripted_on_batch(fn, scripted_fn, batch_tensors)
- scripted_fn.save(os.path.join(tmpdir, "t_norm.pt"))
- @pytest.mark.parametrize("device", cpu_and_cuda())
- def test_linear_transformation(device, tmpdir):
- c, h, w = 3, 24, 32
- tensor, _ = _create_data(h, w, channels=c, device=device)
- matrix = torch.rand(c * h * w, c * h * w, device=device)
- mean_vector = torch.rand(c * h * w, device=device)
- fn = T.LinearTransformation(matrix, mean_vector)
- scripted_fn = torch.jit.script(fn)
- _test_transform_vs_scripted(fn, scripted_fn, tensor)
- batch_tensors = torch.rand(4, c, h, w, device=device)
- # We skip some tests from _test_transform_vs_scripted_on_batch as
- # results for scripted and non-scripted transformations are not exactly the same
- torch.manual_seed(12)
- transformed_batch = fn(batch_tensors)
- torch.manual_seed(12)
- s_transformed_batch = scripted_fn(batch_tensors)
- assert_equal(transformed_batch, s_transformed_batch)
- scripted_fn.save(os.path.join(tmpdir, "t_norm.pt"))
- @pytest.mark.parametrize("device", cpu_and_cuda())
- def test_compose(device):
- tensor, _ = _create_data(26, 34, device=device)
- tensor = tensor.to(dtype=torch.float32) / 255.0
- transforms = T.Compose(
- [
- T.CenterCrop(10),
- T.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
- ]
- )
- s_transforms = torch.nn.Sequential(*transforms.transforms)
- scripted_fn = torch.jit.script(s_transforms)
- torch.manual_seed(12)
- transformed_tensor = transforms(tensor)
- torch.manual_seed(12)
- transformed_tensor_script = scripted_fn(tensor)
- assert_equal(transformed_tensor, transformed_tensor_script, msg=f"{transforms}")
- t = T.Compose(
- [
- lambda x: x,
- ]
- )
- with pytest.raises(RuntimeError, match="cannot call a value of type 'Tensor'"):
- torch.jit.script(t)
- @pytest.mark.parametrize("device", cpu_and_cuda())
- def test_random_apply(device):
- tensor, _ = _create_data(26, 34, device=device)
- tensor = tensor.to(dtype=torch.float32) / 255.0
- transforms = T.RandomApply(
- [
- T.RandomHorizontalFlip(),
- T.ColorJitter(),
- ],
- p=0.4,
- )
- s_transforms = T.RandomApply(
- torch.nn.ModuleList(
- [
- T.RandomHorizontalFlip(),
- T.ColorJitter(),
- ]
- ),
- p=0.4,
- )
- scripted_fn = torch.jit.script(s_transforms)
- torch.manual_seed(12)
- transformed_tensor = transforms(tensor)
- torch.manual_seed(12)
- transformed_tensor_script = scripted_fn(tensor)
- assert_equal(transformed_tensor, transformed_tensor_script, msg=f"{transforms}")
- if device == "cpu":
- # Can't check this twice, otherwise
- # "Can't redefine method: forward on class: __torch__.torchvision.transforms.transforms.RandomApply"
- transforms = T.RandomApply(
- [
- T.ColorJitter(),
- ],
- p=0.3,
- )
- with pytest.raises(RuntimeError, match="Module 'RandomApply' has no attribute 'transforms'"):
- torch.jit.script(transforms)
- @pytest.mark.parametrize("device", cpu_and_cuda())
- @pytest.mark.parametrize(
- "meth_kwargs",
- [
- {"kernel_size": 3, "sigma": 0.75},
- {"kernel_size": 23, "sigma": [0.1, 2.0]},
- {"kernel_size": 23, "sigma": (0.1, 2.0)},
- {"kernel_size": [3, 3], "sigma": (1.0, 1.0)},
- {"kernel_size": (3, 3), "sigma": (0.1, 2.0)},
- {"kernel_size": [23], "sigma": 0.75},
- ],
- )
- @pytest.mark.parametrize("channels", [1, 3])
- def test_gaussian_blur(device, channels, meth_kwargs):
- if all(
- [
- device == "cuda",
- channels == 1,
- meth_kwargs["kernel_size"] in [23, [23]],
- torch.version.cuda == "11.3",
- sys.platform in ("win32", "cygwin"),
- ]
- ):
- pytest.skip("Fails on Windows, see https://github.com/pytorch/vision/issues/5464")
- tol = 1.0 + 1e-10
- torch.manual_seed(12)
- _test_class_op(
- T.GaussianBlur,
- meth_kwargs=meth_kwargs,
- channels=channels,
- test_exact_match=False,
- device=device,
- agg_method="max",
- tol=tol,
- )
- @pytest.mark.parametrize("device", cpu_and_cuda())
- @pytest.mark.parametrize(
- "fill",
- [
- 1,
- 1.0,
- [1],
- [1.0],
- (1,),
- (1.0,),
- [1, 2, 3],
- [1.0, 2.0, 3.0],
- (1, 2, 3),
- (1.0, 2.0, 3.0),
- ],
- )
- @pytest.mark.parametrize("channels", [1, 3])
- def test_elastic_transform(device, channels, fill):
- if isinstance(fill, (list, tuple)) and len(fill) > 1 and channels == 1:
- # For this the test would correctly fail, since the number of channels in the image does not match `fill`.
- # Thus, this is not an issue in the transform, but rather a problem of parametrization that just gives the
- # product of `fill` and `channels`.
- return
- _test_class_op(
- T.ElasticTransform,
- meth_kwargs=dict(fill=fill),
- channels=channels,
- device=device,
- )
|