123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167 |
- import pytest
- import torch
- import torchvision.models
- from common_utils import assert_equal
- from torchvision.models.detection.faster_rcnn import FastRCNNPredictor, TwoMLPHead
- from torchvision.models.detection.roi_heads import RoIHeads
- from torchvision.models.detection.rpn import AnchorGenerator, RegionProposalNetwork, RPNHead
- from torchvision.ops import MultiScaleRoIAlign
- class TestModelsDetectionNegativeSamples:
- def _make_empty_sample(self, add_masks=False, add_keypoints=False):
- images = [torch.rand((3, 100, 100), dtype=torch.float32)]
- boxes = torch.zeros((0, 4), dtype=torch.float32)
- negative_target = {
- "boxes": boxes,
- "labels": torch.zeros(0, dtype=torch.int64),
- "image_id": 4,
- "area": (boxes[:, 3] - boxes[:, 1]) * (boxes[:, 2] - boxes[:, 0]),
- "iscrowd": torch.zeros((0,), dtype=torch.int64),
- }
- if add_masks:
- negative_target["masks"] = torch.zeros(0, 100, 100, dtype=torch.uint8)
- if add_keypoints:
- negative_target["keypoints"] = torch.zeros(17, 0, 3, dtype=torch.float32)
- targets = [negative_target]
- return images, targets
- def test_targets_to_anchors(self):
- _, targets = self._make_empty_sample()
- anchors = [torch.randint(-50, 50, (3, 4), dtype=torch.float32)]
- anchor_sizes = ((32,), (64,), (128,), (256,), (512,))
- aspect_ratios = ((0.5, 1.0, 2.0),) * len(anchor_sizes)
- rpn_anchor_generator = AnchorGenerator(anchor_sizes, aspect_ratios)
- rpn_head = RPNHead(4, rpn_anchor_generator.num_anchors_per_location()[0])
- head = RegionProposalNetwork(rpn_anchor_generator, rpn_head, 0.5, 0.3, 256, 0.5, 2000, 2000, 0.7, 0.05)
- labels, matched_gt_boxes = head.assign_targets_to_anchors(anchors, targets)
- assert labels[0].sum() == 0
- assert labels[0].shape == torch.Size([anchors[0].shape[0]])
- assert labels[0].dtype == torch.float32
- assert matched_gt_boxes[0].sum() == 0
- assert matched_gt_boxes[0].shape == anchors[0].shape
- assert matched_gt_boxes[0].dtype == torch.float32
- def test_assign_targets_to_proposals(self):
- proposals = [torch.randint(-50, 50, (20, 4), dtype=torch.float32)]
- gt_boxes = [torch.zeros((0, 4), dtype=torch.float32)]
- gt_labels = [torch.tensor([[0]], dtype=torch.int64)]
- box_roi_pool = MultiScaleRoIAlign(featmap_names=["0", "1", "2", "3"], output_size=7, sampling_ratio=2)
- resolution = box_roi_pool.output_size[0]
- representation_size = 1024
- box_head = TwoMLPHead(4 * resolution**2, representation_size)
- representation_size = 1024
- box_predictor = FastRCNNPredictor(representation_size, 2)
- roi_heads = RoIHeads(
- # Box
- box_roi_pool,
- box_head,
- box_predictor,
- 0.5,
- 0.5,
- 512,
- 0.25,
- None,
- 0.05,
- 0.5,
- 100,
- )
- matched_idxs, labels = roi_heads.assign_targets_to_proposals(proposals, gt_boxes, gt_labels)
- assert matched_idxs[0].sum() == 0
- assert matched_idxs[0].shape == torch.Size([proposals[0].shape[0]])
- assert matched_idxs[0].dtype == torch.int64
- assert labels[0].sum() == 0
- assert labels[0].shape == torch.Size([proposals[0].shape[0]])
- assert labels[0].dtype == torch.int64
- @pytest.mark.parametrize(
- "name",
- [
- "fasterrcnn_resnet50_fpn",
- "fasterrcnn_mobilenet_v3_large_fpn",
- "fasterrcnn_mobilenet_v3_large_320_fpn",
- ],
- )
- def test_forward_negative_sample_frcnn(self, name):
- model = torchvision.models.get_model(
- name, weights=None, weights_backbone=None, num_classes=2, min_size=100, max_size=100
- )
- images, targets = self._make_empty_sample()
- loss_dict = model(images, targets)
- assert_equal(loss_dict["loss_box_reg"], torch.tensor(0.0))
- assert_equal(loss_dict["loss_rpn_box_reg"], torch.tensor(0.0))
- def test_forward_negative_sample_mrcnn(self):
- model = torchvision.models.detection.maskrcnn_resnet50_fpn(
- weights=None, weights_backbone=None, num_classes=2, min_size=100, max_size=100
- )
- images, targets = self._make_empty_sample(add_masks=True)
- loss_dict = model(images, targets)
- assert_equal(loss_dict["loss_box_reg"], torch.tensor(0.0))
- assert_equal(loss_dict["loss_rpn_box_reg"], torch.tensor(0.0))
- assert_equal(loss_dict["loss_mask"], torch.tensor(0.0))
- def test_forward_negative_sample_krcnn(self):
- model = torchvision.models.detection.keypointrcnn_resnet50_fpn(
- weights=None, weights_backbone=None, num_classes=2, min_size=100, max_size=100
- )
- images, targets = self._make_empty_sample(add_keypoints=True)
- loss_dict = model(images, targets)
- assert_equal(loss_dict["loss_box_reg"], torch.tensor(0.0))
- assert_equal(loss_dict["loss_rpn_box_reg"], torch.tensor(0.0))
- assert_equal(loss_dict["loss_keypoint"], torch.tensor(0.0))
- def test_forward_negative_sample_retinanet(self):
- model = torchvision.models.detection.retinanet_resnet50_fpn(
- weights=None, weights_backbone=None, num_classes=2, min_size=100, max_size=100
- )
- images, targets = self._make_empty_sample()
- loss_dict = model(images, targets)
- assert_equal(loss_dict["bbox_regression"], torch.tensor(0.0))
- def test_forward_negative_sample_fcos(self):
- model = torchvision.models.detection.fcos_resnet50_fpn(
- weights=None, weights_backbone=None, num_classes=2, min_size=100, max_size=100
- )
- images, targets = self._make_empty_sample()
- loss_dict = model(images, targets)
- assert_equal(loss_dict["bbox_regression"], torch.tensor(0.0))
- assert_equal(loss_dict["bbox_ctrness"], torch.tensor(0.0))
- def test_forward_negative_sample_ssd(self):
- model = torchvision.models.detection.ssd300_vgg16(weights=None, weights_backbone=None, num_classes=2)
- images, targets = self._make_empty_sample()
- loss_dict = model(images, targets)
- assert_equal(loss_dict["bbox_regression"], torch.tensor(0.0))
- if __name__ == "__main__":
- pytest.main([__file__])
|