1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586 |
- import pytest
- import torch
- from common_utils import assert_equal, get_list_of_videos
- from torchvision import io
- from torchvision.datasets.samplers import DistributedSampler, RandomClipSampler, UniformClipSampler
- from torchvision.datasets.video_utils import VideoClips
- @pytest.mark.skipif(not io.video._av_available(), reason="this test requires av")
- class TestDatasetsSamplers:
- def test_random_clip_sampler(self, tmpdir):
- video_list = get_list_of_videos(tmpdir, num_videos=3, sizes=[25, 25, 25])
- video_clips = VideoClips(video_list, 5, 5)
- sampler = RandomClipSampler(video_clips, 3)
- assert len(sampler) == 3 * 3
- indices = torch.tensor(list(iter(sampler)))
- videos = torch.div(indices, 5, rounding_mode="floor")
- v_idxs, count = torch.unique(videos, return_counts=True)
- assert_equal(v_idxs, torch.tensor([0, 1, 2]))
- assert_equal(count, torch.tensor([3, 3, 3]))
- def test_random_clip_sampler_unequal(self, tmpdir):
- video_list = get_list_of_videos(tmpdir, num_videos=3, sizes=[10, 25, 25])
- video_clips = VideoClips(video_list, 5, 5)
- sampler = RandomClipSampler(video_clips, 3)
- assert len(sampler) == 2 + 3 + 3
- indices = list(iter(sampler))
- assert 0 in indices
- assert 1 in indices
- # remove elements of the first video, to simplify testing
- indices.remove(0)
- indices.remove(1)
- indices = torch.tensor(indices) - 2
- videos = torch.div(indices, 5, rounding_mode="floor")
- v_idxs, count = torch.unique(videos, return_counts=True)
- assert_equal(v_idxs, torch.tensor([0, 1]))
- assert_equal(count, torch.tensor([3, 3]))
- def test_uniform_clip_sampler(self, tmpdir):
- video_list = get_list_of_videos(tmpdir, num_videos=3, sizes=[25, 25, 25])
- video_clips = VideoClips(video_list, 5, 5)
- sampler = UniformClipSampler(video_clips, 3)
- assert len(sampler) == 3 * 3
- indices = torch.tensor(list(iter(sampler)))
- videos = torch.div(indices, 5, rounding_mode="floor")
- v_idxs, count = torch.unique(videos, return_counts=True)
- assert_equal(v_idxs, torch.tensor([0, 1, 2]))
- assert_equal(count, torch.tensor([3, 3, 3]))
- assert_equal(indices, torch.tensor([0, 2, 4, 5, 7, 9, 10, 12, 14]))
- def test_uniform_clip_sampler_insufficient_clips(self, tmpdir):
- video_list = get_list_of_videos(tmpdir, num_videos=3, sizes=[10, 25, 25])
- video_clips = VideoClips(video_list, 5, 5)
- sampler = UniformClipSampler(video_clips, 3)
- assert len(sampler) == 3 * 3
- indices = torch.tensor(list(iter(sampler)))
- assert_equal(indices, torch.tensor([0, 0, 1, 2, 4, 6, 7, 9, 11]))
- def test_distributed_sampler_and_uniform_clip_sampler(self, tmpdir):
- video_list = get_list_of_videos(tmpdir, num_videos=3, sizes=[25, 25, 25])
- video_clips = VideoClips(video_list, 5, 5)
- clip_sampler = UniformClipSampler(video_clips, 3)
- distributed_sampler_rank0 = DistributedSampler(
- clip_sampler,
- num_replicas=2,
- rank=0,
- group_size=3,
- )
- indices = torch.tensor(list(iter(distributed_sampler_rank0)))
- assert len(distributed_sampler_rank0) == 6
- assert_equal(indices, torch.tensor([0, 2, 4, 10, 12, 14]))
- distributed_sampler_rank1 = DistributedSampler(
- clip_sampler,
- num_replicas=2,
- rank=1,
- group_size=3,
- )
- indices = torch.tensor(list(iter(distributed_sampler_rank1)))
- assert len(distributed_sampler_rank1) == 6
- assert_equal(indices, torch.tensor([5, 7, 9, 0, 2, 4]))
- if __name__ == "__main__":
- pytest.main([__file__])
|