123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102 |
- """Run smoke tests"""
- import sys
- from pathlib import Path
- import torch
- import torchvision
- from torchvision.io import decode_jpeg, read_file, read_image
- from torchvision.models import resnet50, ResNet50_Weights
- SCRIPT_DIR = Path(__file__).parent
- def smoke_test_torchvision() -> None:
- print(
- "Is torchvision usable?",
- all(x is not None for x in [torch.ops.image.decode_png, torch.ops.torchvision.roi_align]),
- )
- def smoke_test_torchvision_read_decode() -> None:
- img_jpg = read_image(str(SCRIPT_DIR / "assets" / "encode_jpeg" / "grace_hopper_517x606.jpg"))
- if img_jpg.shape != (3, 606, 517):
- raise RuntimeError(f"Unexpected shape of img_jpg: {img_jpg.shape}")
- img_png = read_image(str(SCRIPT_DIR / "assets" / "interlaced_png" / "wizard_low.png"))
- if img_png.shape != (4, 471, 354):
- raise RuntimeError(f"Unexpected shape of img_png: {img_png.shape}")
- def smoke_test_torchvision_decode_jpeg(device: str = "cpu"):
- img_jpg_data = read_file(str(SCRIPT_DIR / "assets" / "encode_jpeg" / "grace_hopper_517x606.jpg"))
- img_jpg = decode_jpeg(img_jpg_data, device=device)
- if img_jpg.shape != (3, 606, 517):
- raise RuntimeError(f"Unexpected shape of img_jpg: {img_jpg.shape}")
- def smoke_test_compile() -> None:
- try:
- model = resnet50().cuda()
- model = torch.compile(model)
- x = torch.randn(1, 3, 224, 224, device="cuda")
- out = model(x)
- print(f"torch.compile model output: {out.shape}")
- except RuntimeError:
- if sys.platform == "win32":
- print("Successfully caught torch.compile RuntimeError on win")
- elif sys.version_info >= (3, 11, 0):
- print("Successfully caught torch.compile RuntimeError on Python 3.11")
- else:
- raise
- def smoke_test_torchvision_resnet50_classify(device: str = "cpu") -> None:
- img = read_image(str(SCRIPT_DIR / ".." / "gallery" / "assets" / "dog2.jpg")).to(device)
- # Step 1: Initialize model with the best available weights
- weights = ResNet50_Weights.DEFAULT
- model = resnet50(weights=weights).to(device)
- model.eval()
- # Step 2: Initialize the inference transforms
- preprocess = weights.transforms()
- # Step 3: Apply inference preprocessing transforms
- batch = preprocess(img).unsqueeze(0)
- # Step 4: Use the model and print the predicted category
- prediction = model(batch).squeeze(0).softmax(0)
- class_id = prediction.argmax().item()
- score = prediction[class_id].item()
- category_name = weights.meta["categories"][class_id]
- expected_category = "German shepherd"
- print(f"{category_name} ({device}): {100 * score:.1f}%")
- if category_name != expected_category:
- raise RuntimeError(f"Failed ResNet50 classify {category_name} Expected: {expected_category}")
- def main() -> None:
- print(f"torchvision: {torchvision.__version__}")
- print(f"torch.cuda.is_available: {torch.cuda.is_available()}")
- # Turn 1.11.0aHASH into 1.11 (major.minor only)
- version = ".".join(torchvision.__version__.split(".")[:2])
- if version >= "0.16":
- print(f"{torch.ops.image._jpeg_version() = }")
- assert torch.ops.image._is_compiled_against_turbo()
- smoke_test_torchvision()
- smoke_test_torchvision_read_decode()
- smoke_test_torchvision_resnet50_classify()
- smoke_test_torchvision_decode_jpeg()
- if torch.cuda.is_available():
- smoke_test_torchvision_decode_jpeg("cuda")
- smoke_test_torchvision_resnet50_classify("cuda")
- smoke_test_compile()
- if torch.backends.mps.is_available():
- smoke_test_torchvision_resnet50_classify("mps")
- if __name__ == "__main__":
- main()
|