12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758 |
- #include <gtest/gtest.h>
- #include <torch/script.h>
- #include <torch/torch.h>
- // FIXME: the include path differs from OSS due to the extra csrc
- #include <torchvision/csrc/ops/nms.h>
- TEST(test_custom_operators, nms) {
- // make sure that the torchvision ops are visible to the jit interpreter
- auto& ops = torch::jit::getAllOperatorsFor(torch::jit::Symbol::fromQualString("torchvision::nms"));
- ASSERT_EQ(ops.size(), 1);
- auto& op = ops.front();
- ASSERT_EQ(op->schema().name(), "torchvision::nms");
- torch::jit::Stack stack;
- at::Tensor boxes = at::rand({50, 4}), scores = at::rand({50});
- double thresh = 0.7;
- torch::jit::push(stack, boxes, scores, thresh);
- op->getOperation()(stack);
- at::Tensor output_jit;
- torch::jit::pop(stack, output_jit);
- at::Tensor output = vision::ops::nms(boxes, scores, thresh);
- ASSERT_TRUE(output_jit.allclose(output));
- }
- TEST(test_custom_operators, roi_align_visible) {
- // make sure that the torchvision ops are visible to the jit interpreter even if
- // not explicitly included
- auto& ops = torch::jit::getAllOperatorsFor(torch::jit::Symbol::fromQualString("torchvision::roi_align"));
- ASSERT_EQ(ops.size(), 1);
- auto& op = ops.front();
- ASSERT_EQ(op->schema().name(), "torchvision::roi_align");
- torch::jit::Stack stack;
- float roi_data[] = {
- 0., 0., 0., 5., 5.,
- 0., 5., 5., 10., 10.
- };
- at::Tensor input = at::rand({1, 2, 10, 10}), rois = at::from_blob(roi_data, {2, 5});
- double spatial_scale = 1.0;
- int64_t pooled_height = 3, pooled_width = 3, sampling_ratio = -1;
- bool aligned = true;
- torch::jit::push(stack, input, rois, spatial_scale, pooled_height, pooled_width, sampling_ratio, aligned);
- op->getOperation()(stack);
- at::Tensor output_jit;
- torch::jit::pop(stack, output_jit);
- ASSERT_EQ(output_jit.sizes()[0], 2);
- ASSERT_EQ(output_jit.sizes()[1], 2);
- ASSERT_EQ(output_jit.sizes()[2], 3);
- ASSERT_EQ(output_jit.sizes()[3], 3);
- }
|