123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446 |
- import datetime
- import os
- import time
- import warnings
- import datasets
- import presets
- import torch
- import torch.utils.data
- import torchvision
- import torchvision.datasets.video_utils
- import utils
- from torch import nn
- from torch.utils.data.dataloader import default_collate
- from torchvision.datasets.samplers import DistributedSampler, RandomClipSampler, UniformClipSampler
- def train_one_epoch(model, criterion, optimizer, lr_scheduler, data_loader, device, epoch, print_freq, scaler=None):
- model.train()
- metric_logger = utils.MetricLogger(delimiter=" ")
- metric_logger.add_meter("lr", utils.SmoothedValue(window_size=1, fmt="{value}"))
- metric_logger.add_meter("clips/s", utils.SmoothedValue(window_size=10, fmt="{value:.3f}"))
- header = f"Epoch: [{epoch}]"
- for video, target, _ in metric_logger.log_every(data_loader, print_freq, header):
- start_time = time.time()
- video, target = video.to(device), target.to(device)
- with torch.cuda.amp.autocast(enabled=scaler is not None):
- output = model(video)
- loss = criterion(output, target)
- optimizer.zero_grad()
- if scaler is not None:
- scaler.scale(loss).backward()
- scaler.step(optimizer)
- scaler.update()
- else:
- loss.backward()
- optimizer.step()
- acc1, acc5 = utils.accuracy(output, target, topk=(1, 5))
- batch_size = video.shape[0]
- metric_logger.update(loss=loss.item(), lr=optimizer.param_groups[0]["lr"])
- metric_logger.meters["acc1"].update(acc1.item(), n=batch_size)
- metric_logger.meters["acc5"].update(acc5.item(), n=batch_size)
- metric_logger.meters["clips/s"].update(batch_size / (time.time() - start_time))
- lr_scheduler.step()
- def evaluate(model, criterion, data_loader, device):
- model.eval()
- metric_logger = utils.MetricLogger(delimiter=" ")
- header = "Test:"
- num_processed_samples = 0
- # Group and aggregate output of a video
- num_videos = len(data_loader.dataset.samples)
- num_classes = len(data_loader.dataset.classes)
- agg_preds = torch.zeros((num_videos, num_classes), dtype=torch.float32, device=device)
- agg_targets = torch.zeros((num_videos), dtype=torch.int32, device=device)
- with torch.inference_mode():
- for video, target, video_idx in metric_logger.log_every(data_loader, 100, header):
- video = video.to(device, non_blocking=True)
- target = target.to(device, non_blocking=True)
- output = model(video)
- loss = criterion(output, target)
- # Use softmax to convert output into prediction probability
- preds = torch.softmax(output, dim=1)
- for b in range(video.size(0)):
- idx = video_idx[b].item()
- agg_preds[idx] += preds[b].detach()
- agg_targets[idx] = target[b].detach().item()
- acc1, acc5 = utils.accuracy(output, target, topk=(1, 5))
- # FIXME need to take into account that the datasets
- # could have been padded in distributed setup
- batch_size = video.shape[0]
- metric_logger.update(loss=loss.item())
- metric_logger.meters["acc1"].update(acc1.item(), n=batch_size)
- metric_logger.meters["acc5"].update(acc5.item(), n=batch_size)
- num_processed_samples += batch_size
- # gather the stats from all processes
- num_processed_samples = utils.reduce_across_processes(num_processed_samples)
- if isinstance(data_loader.sampler, DistributedSampler):
- # Get the len of UniformClipSampler inside DistributedSampler
- num_data_from_sampler = len(data_loader.sampler.dataset)
- else:
- num_data_from_sampler = len(data_loader.sampler)
- if (
- hasattr(data_loader.dataset, "__len__")
- and num_data_from_sampler != num_processed_samples
- and torch.distributed.get_rank() == 0
- ):
- # See FIXME above
- warnings.warn(
- f"It looks like the sampler has {num_data_from_sampler} samples, but {num_processed_samples} "
- "samples were used for the validation, which might bias the results. "
- "Try adjusting the batch size and / or the world size. "
- "Setting the world size to 1 is always a safe bet."
- )
- metric_logger.synchronize_between_processes()
- print(
- " * Clip Acc@1 {top1.global_avg:.3f} Clip Acc@5 {top5.global_avg:.3f}".format(
- top1=metric_logger.acc1, top5=metric_logger.acc5
- )
- )
- # Reduce the agg_preds and agg_targets from all gpu and show result
- agg_preds = utils.reduce_across_processes(agg_preds)
- agg_targets = utils.reduce_across_processes(agg_targets, op=torch.distributed.ReduceOp.MAX)
- agg_acc1, agg_acc5 = utils.accuracy(agg_preds, agg_targets, topk=(1, 5))
- print(" * Video Acc@1 {acc1:.3f} Video Acc@5 {acc5:.3f}".format(acc1=agg_acc1, acc5=agg_acc5))
- return metric_logger.acc1.global_avg
- def _get_cache_path(filepath, args):
- import hashlib
- value = f"{filepath}-{args.clip_len}-{args.kinetics_version}-{args.frame_rate}"
- h = hashlib.sha1(value.encode()).hexdigest()
- cache_path = os.path.join("~", ".torch", "vision", "datasets", "kinetics", h[:10] + ".pt")
- cache_path = os.path.expanduser(cache_path)
- return cache_path
- def collate_fn(batch):
- # remove audio from the batch
- batch = [(d[0], d[2], d[3]) for d in batch]
- return default_collate(batch)
- def main(args):
- if args.output_dir:
- utils.mkdir(args.output_dir)
- utils.init_distributed_mode(args)
- print(args)
- device = torch.device(args.device)
- if args.use_deterministic_algorithms:
- torch.backends.cudnn.benchmark = False
- torch.use_deterministic_algorithms(True)
- else:
- torch.backends.cudnn.benchmark = True
- # Data loading code
- print("Loading data")
- val_resize_size = tuple(args.val_resize_size)
- val_crop_size = tuple(args.val_crop_size)
- train_resize_size = tuple(args.train_resize_size)
- train_crop_size = tuple(args.train_crop_size)
- traindir = os.path.join(args.data_path, "train")
- valdir = os.path.join(args.data_path, "val")
- print("Loading training data")
- st = time.time()
- cache_path = _get_cache_path(traindir, args)
- transform_train = presets.VideoClassificationPresetTrain(crop_size=train_crop_size, resize_size=train_resize_size)
- if args.cache_dataset and os.path.exists(cache_path):
- print(f"Loading dataset_train from {cache_path}")
- dataset, _ = torch.load(cache_path)
- dataset.transform = transform_train
- else:
- if args.distributed:
- print("It is recommended to pre-compute the dataset cache on a single-gpu first, as it will be faster")
- dataset = datasets.KineticsWithVideoId(
- args.data_path,
- frames_per_clip=args.clip_len,
- num_classes=args.kinetics_version,
- split="train",
- step_between_clips=1,
- transform=transform_train,
- frame_rate=args.frame_rate,
- extensions=(
- "avi",
- "mp4",
- ),
- output_format="TCHW",
- )
- if args.cache_dataset:
- print(f"Saving dataset_train to {cache_path}")
- utils.mkdir(os.path.dirname(cache_path))
- utils.save_on_master((dataset, traindir), cache_path)
- print("Took", time.time() - st)
- print("Loading validation data")
- cache_path = _get_cache_path(valdir, args)
- if args.weights and args.test_only:
- weights = torchvision.models.get_weight(args.weights)
- transform_test = weights.transforms()
- else:
- transform_test = presets.VideoClassificationPresetEval(crop_size=val_crop_size, resize_size=val_resize_size)
- if args.cache_dataset and os.path.exists(cache_path):
- print(f"Loading dataset_test from {cache_path}")
- dataset_test, _ = torch.load(cache_path)
- dataset_test.transform = transform_test
- else:
- if args.distributed:
- print("It is recommended to pre-compute the dataset cache on a single-gpu first, as it will be faster")
- dataset_test = datasets.KineticsWithVideoId(
- args.data_path,
- frames_per_clip=args.clip_len,
- num_classes=args.kinetics_version,
- split="val",
- step_between_clips=1,
- transform=transform_test,
- frame_rate=args.frame_rate,
- extensions=(
- "avi",
- "mp4",
- ),
- output_format="TCHW",
- )
- if args.cache_dataset:
- print(f"Saving dataset_test to {cache_path}")
- utils.mkdir(os.path.dirname(cache_path))
- utils.save_on_master((dataset_test, valdir), cache_path)
- print("Creating data loaders")
- train_sampler = RandomClipSampler(dataset.video_clips, args.clips_per_video)
- test_sampler = UniformClipSampler(dataset_test.video_clips, args.clips_per_video)
- if args.distributed:
- train_sampler = DistributedSampler(train_sampler)
- test_sampler = DistributedSampler(test_sampler, shuffle=False)
- data_loader = torch.utils.data.DataLoader(
- dataset,
- batch_size=args.batch_size,
- sampler=train_sampler,
- num_workers=args.workers,
- pin_memory=True,
- collate_fn=collate_fn,
- )
- data_loader_test = torch.utils.data.DataLoader(
- dataset_test,
- batch_size=args.batch_size,
- sampler=test_sampler,
- num_workers=args.workers,
- pin_memory=True,
- collate_fn=collate_fn,
- )
- print("Creating model")
- model = torchvision.models.get_model(args.model, weights=args.weights)
- model.to(device)
- if args.distributed and args.sync_bn:
- model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
- criterion = nn.CrossEntropyLoss()
- optimizer = torch.optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay)
- scaler = torch.cuda.amp.GradScaler() if args.amp else None
- # convert scheduler to be per iteration, not per epoch, for warmup that lasts
- # between different epochs
- iters_per_epoch = len(data_loader)
- lr_milestones = [iters_per_epoch * (m - args.lr_warmup_epochs) for m in args.lr_milestones]
- main_lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=lr_milestones, gamma=args.lr_gamma)
- if args.lr_warmup_epochs > 0:
- warmup_iters = iters_per_epoch * args.lr_warmup_epochs
- args.lr_warmup_method = args.lr_warmup_method.lower()
- if args.lr_warmup_method == "linear":
- warmup_lr_scheduler = torch.optim.lr_scheduler.LinearLR(
- optimizer, start_factor=args.lr_warmup_decay, total_iters=warmup_iters
- )
- elif args.lr_warmup_method == "constant":
- warmup_lr_scheduler = torch.optim.lr_scheduler.ConstantLR(
- optimizer, factor=args.lr_warmup_decay, total_iters=warmup_iters
- )
- else:
- raise RuntimeError(
- f"Invalid warmup lr method '{args.lr_warmup_method}'. Only linear and constant are supported."
- )
- lr_scheduler = torch.optim.lr_scheduler.SequentialLR(
- optimizer, schedulers=[warmup_lr_scheduler, main_lr_scheduler], milestones=[warmup_iters]
- )
- else:
- lr_scheduler = main_lr_scheduler
- model_without_ddp = model
- if args.distributed:
- model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
- model_without_ddp = model.module
- if args.resume:
- checkpoint = torch.load(args.resume, map_location="cpu")
- model_without_ddp.load_state_dict(checkpoint["model"])
- optimizer.load_state_dict(checkpoint["optimizer"])
- lr_scheduler.load_state_dict(checkpoint["lr_scheduler"])
- args.start_epoch = checkpoint["epoch"] + 1
- if args.amp:
- scaler.load_state_dict(checkpoint["scaler"])
- if args.test_only:
- # We disable the cudnn benchmarking because it can noticeably affect the accuracy
- torch.backends.cudnn.benchmark = False
- torch.backends.cudnn.deterministic = True
- evaluate(model, criterion, data_loader_test, device=device)
- return
- print("Start training")
- start_time = time.time()
- for epoch in range(args.start_epoch, args.epochs):
- if args.distributed:
- train_sampler.set_epoch(epoch)
- train_one_epoch(model, criterion, optimizer, lr_scheduler, data_loader, device, epoch, args.print_freq, scaler)
- evaluate(model, criterion, data_loader_test, device=device)
- if args.output_dir:
- checkpoint = {
- "model": model_without_ddp.state_dict(),
- "optimizer": optimizer.state_dict(),
- "lr_scheduler": lr_scheduler.state_dict(),
- "epoch": epoch,
- "args": args,
- }
- if args.amp:
- checkpoint["scaler"] = scaler.state_dict()
- utils.save_on_master(checkpoint, os.path.join(args.output_dir, f"model_{epoch}.pth"))
- utils.save_on_master(checkpoint, os.path.join(args.output_dir, "checkpoint.pth"))
- total_time = time.time() - start_time
- total_time_str = str(datetime.timedelta(seconds=int(total_time)))
- print(f"Training time {total_time_str}")
- def get_args_parser(add_help=True):
- import argparse
- parser = argparse.ArgumentParser(description="PyTorch Video Classification Training", add_help=add_help)
- parser.add_argument("--data-path", default="/datasets01_101/kinetics/070618/", type=str, help="dataset path")
- parser.add_argument(
- "--kinetics-version", default="400", type=str, choices=["400", "600"], help="Select kinetics version"
- )
- parser.add_argument("--model", default="r2plus1d_18", type=str, help="model name")
- parser.add_argument("--device", default="cuda", type=str, help="device (Use cuda or cpu Default: cuda)")
- parser.add_argument("--clip-len", default=16, type=int, metavar="N", help="number of frames per clip")
- parser.add_argument("--frame-rate", default=15, type=int, metavar="N", help="the frame rate")
- parser.add_argument(
- "--clips-per-video", default=5, type=int, metavar="N", help="maximum number of clips per video to consider"
- )
- parser.add_argument(
- "-b", "--batch-size", default=24, type=int, help="images per gpu, the total batch size is $NGPU x batch_size"
- )
- parser.add_argument("--epochs", default=45, type=int, metavar="N", help="number of total epochs to run")
- parser.add_argument(
- "-j", "--workers", default=10, type=int, metavar="N", help="number of data loading workers (default: 10)"
- )
- parser.add_argument("--lr", default=0.64, type=float, help="initial learning rate")
- parser.add_argument("--momentum", default=0.9, type=float, metavar="M", help="momentum")
- parser.add_argument(
- "--wd",
- "--weight-decay",
- default=1e-4,
- type=float,
- metavar="W",
- help="weight decay (default: 1e-4)",
- dest="weight_decay",
- )
- parser.add_argument("--lr-milestones", nargs="+", default=[20, 30, 40], type=int, help="decrease lr on milestones")
- parser.add_argument("--lr-gamma", default=0.1, type=float, help="decrease lr by a factor of lr-gamma")
- parser.add_argument("--lr-warmup-epochs", default=10, type=int, help="the number of epochs to warmup (default: 10)")
- parser.add_argument("--lr-warmup-method", default="linear", type=str, help="the warmup method (default: linear)")
- parser.add_argument("--lr-warmup-decay", default=0.001, type=float, help="the decay for lr")
- parser.add_argument("--print-freq", default=10, type=int, help="print frequency")
- parser.add_argument("--output-dir", default=".", type=str, help="path to save outputs")
- parser.add_argument("--resume", default="", type=str, help="path of checkpoint")
- parser.add_argument("--start-epoch", default=0, type=int, metavar="N", help="start epoch")
- parser.add_argument(
- "--cache-dataset",
- dest="cache_dataset",
- help="Cache the datasets for quicker initialization. It also serializes the transforms",
- action="store_true",
- )
- parser.add_argument(
- "--sync-bn",
- dest="sync_bn",
- help="Use sync batch norm",
- action="store_true",
- )
- parser.add_argument(
- "--test-only",
- dest="test_only",
- help="Only test the model",
- action="store_true",
- )
- parser.add_argument(
- "--use-deterministic-algorithms", action="store_true", help="Forces the use of deterministic algorithms only."
- )
- # distributed training parameters
- parser.add_argument("--world-size", default=1, type=int, help="number of distributed processes")
- parser.add_argument("--dist-url", default="env://", type=str, help="url used to set up distributed training")
- parser.add_argument(
- "--val-resize-size",
- default=(128, 171),
- nargs="+",
- type=int,
- help="the resize size used for validation (default: (128, 171))",
- )
- parser.add_argument(
- "--val-crop-size",
- default=(112, 112),
- nargs="+",
- type=int,
- help="the central crop size used for validation (default: (112, 112))",
- )
- parser.add_argument(
- "--train-resize-size",
- default=(128, 171),
- nargs="+",
- type=int,
- help="the resize size used for training (default: (128, 171))",
- )
- parser.add_argument(
- "--train-crop-size",
- default=(112, 112),
- nargs="+",
- type=int,
- help="the random crop size used for training (default: (112, 112))",
- )
- parser.add_argument("--weights", default=None, type=str, help="the weights enum name to load")
- # Mixed precision training parameters
- parser.add_argument("--amp", action="store_true", help="Use torch.cuda.amp for mixed precision training")
- return parser
- if __name__ == "__main__":
- args = get_args_parser().parse_args()
- main(args)
|