train.py 6.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187
  1. import os
  2. import torch
  3. import torchvision.transforms as transforms
  4. from loss import TripletMarginLoss
  5. from model import EmbeddingNet
  6. from sampler import PKSampler
  7. from torch.optim import Adam
  8. from torch.utils.data import DataLoader
  9. from torchvision.datasets import FashionMNIST
  10. def train_epoch(model, optimizer, criterion, data_loader, device, epoch, print_freq):
  11. model.train()
  12. running_loss = 0
  13. running_frac_pos_triplets = 0
  14. for i, data in enumerate(data_loader):
  15. optimizer.zero_grad()
  16. samples, targets = data[0].to(device), data[1].to(device)
  17. embeddings = model(samples)
  18. loss, frac_pos_triplets = criterion(embeddings, targets)
  19. loss.backward()
  20. optimizer.step()
  21. running_loss += loss.item()
  22. running_frac_pos_triplets += float(frac_pos_triplets)
  23. if i % print_freq == print_freq - 1:
  24. i += 1
  25. avg_loss = running_loss / print_freq
  26. avg_trip = 100.0 * running_frac_pos_triplets / print_freq
  27. print(f"[{epoch:d}, {i:d}] | loss: {avg_loss:.4f} | % avg hard triplets: {avg_trip:.2f}%")
  28. running_loss = 0
  29. running_frac_pos_triplets = 0
  30. def find_best_threshold(dists, targets, device):
  31. best_thresh = 0.01
  32. best_correct = 0
  33. for thresh in torch.arange(0.0, 1.51, 0.01):
  34. predictions = dists <= thresh.to(device)
  35. correct = torch.sum(predictions == targets.to(device)).item()
  36. if correct > best_correct:
  37. best_thresh = thresh
  38. best_correct = correct
  39. accuracy = 100.0 * best_correct / dists.size(0)
  40. return best_thresh, accuracy
  41. @torch.inference_mode()
  42. def evaluate(model, loader, device):
  43. model.eval()
  44. embeds, labels = [], []
  45. dists, targets = None, None
  46. for data in loader:
  47. samples, _labels = data[0].to(device), data[1]
  48. out = model(samples)
  49. embeds.append(out)
  50. labels.append(_labels)
  51. embeds = torch.cat(embeds, dim=0)
  52. labels = torch.cat(labels, dim=0)
  53. dists = torch.cdist(embeds, embeds)
  54. labels = labels.unsqueeze(0)
  55. targets = labels == labels.t()
  56. mask = torch.ones(dists.size()).triu() - torch.eye(dists.size(0))
  57. dists = dists[mask == 1]
  58. targets = targets[mask == 1]
  59. threshold, accuracy = find_best_threshold(dists, targets, device)
  60. print(f"accuracy: {accuracy:.3f}%, threshold: {threshold:.2f}")
  61. def save(model, epoch, save_dir, file_name):
  62. file_name = "epoch_" + str(epoch) + "__" + file_name
  63. save_path = os.path.join(save_dir, file_name)
  64. torch.save(model.state_dict(), save_path)
  65. def main(args):
  66. device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
  67. if args.use_deterministic_algorithms:
  68. torch.backends.cudnn.benchmark = False
  69. torch.use_deterministic_algorithms(True)
  70. else:
  71. torch.backends.cudnn.benchmark = True
  72. p = args.labels_per_batch
  73. k = args.samples_per_label
  74. batch_size = p * k
  75. model = EmbeddingNet()
  76. if args.resume:
  77. model.load_state_dict(torch.load(args.resume))
  78. model.to(device)
  79. criterion = TripletMarginLoss(margin=args.margin)
  80. optimizer = Adam(model.parameters(), lr=args.lr)
  81. transform = transforms.Compose(
  82. [
  83. transforms.Lambda(lambda image: image.convert("RGB")),
  84. transforms.Resize((224, 224)),
  85. transforms.PILToTensor(),
  86. transforms.ConvertImageDtype(torch.float),
  87. ]
  88. )
  89. # Using FMNIST to demonstrate embedding learning using triplet loss. This dataset can
  90. # be replaced with any classification dataset.
  91. train_dataset = FashionMNIST(args.dataset_dir, train=True, transform=transform, download=True)
  92. test_dataset = FashionMNIST(args.dataset_dir, train=False, transform=transform, download=True)
  93. # targets is a list where the i_th element corresponds to the label of i_th dataset element.
  94. # This is required for PKSampler to randomly sample from exactly p classes. You will need to
  95. # construct targets while building your dataset. Some datasets (such as ImageFolder) have a
  96. # targets attribute with the same format.
  97. targets = train_dataset.targets.tolist()
  98. train_loader = DataLoader(
  99. train_dataset, batch_size=batch_size, sampler=PKSampler(targets, p, k), num_workers=args.workers
  100. )
  101. test_loader = DataLoader(test_dataset, batch_size=args.eval_batch_size, shuffle=False, num_workers=args.workers)
  102. if args.test_only:
  103. # We disable the cudnn benchmarking because it can noticeably affect the accuracy
  104. torch.backends.cudnn.benchmark = False
  105. torch.backends.cudnn.deterministic = True
  106. evaluate(model, test_loader, device)
  107. return
  108. for epoch in range(1, args.epochs + 1):
  109. print("Training...")
  110. train_epoch(model, optimizer, criterion, train_loader, device, epoch, args.print_freq)
  111. print("Evaluating...")
  112. evaluate(model, test_loader, device)
  113. print("Saving...")
  114. save(model, epoch, args.save_dir, "ckpt.pth")
  115. def parse_args():
  116. import argparse
  117. parser = argparse.ArgumentParser(description="PyTorch Embedding Learning")
  118. parser.add_argument("--dataset-dir", default="/tmp/fmnist/", type=str, help="FashionMNIST dataset directory path")
  119. parser.add_argument(
  120. "-p", "--labels-per-batch", default=8, type=int, help="Number of unique labels/classes per batch"
  121. )
  122. parser.add_argument("-k", "--samples-per-label", default=8, type=int, help="Number of samples per label in a batch")
  123. parser.add_argument("--eval-batch-size", default=512, type=int, help="batch size for evaluation")
  124. parser.add_argument("--epochs", default=10, type=int, metavar="N", help="number of total epochs to run")
  125. parser.add_argument("-j", "--workers", default=4, type=int, metavar="N", help="number of data loading workers")
  126. parser.add_argument("--lr", default=0.0001, type=float, help="initial learning rate")
  127. parser.add_argument("--margin", default=0.2, type=float, help="Triplet loss margin")
  128. parser.add_argument("--print-freq", default=20, type=int, help="print frequency")
  129. parser.add_argument("--save-dir", default=".", type=str, help="Model save directory")
  130. parser.add_argument("--resume", default="", type=str, help="path of checkpoint")
  131. parser.add_argument(
  132. "--test-only",
  133. dest="test_only",
  134. help="Only test the model",
  135. action="store_true",
  136. )
  137. parser.add_argument(
  138. "--use-deterministic-algorithms", action="store_true", help="Forces the use of deterministic algorithms only."
  139. )
  140. return parser.parse_args()
  141. if __name__ == "__main__":
  142. args = parse_args()
  143. main(args)