123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290 |
- import datetime
- import os
- import time
- from collections import defaultdict, deque
- import torch
- import torch.distributed as dist
- import torch.nn.functional as F
- class SmoothedValue:
- """Track a series of values and provide access to smoothed values over a
- window or the global series average.
- """
- def __init__(self, window_size=20, fmt="{median:.4f} ({global_avg:.4f})"):
- self.deque = deque(maxlen=window_size)
- self.total = 0.0
- self.count = 0
- self.fmt = fmt
- def update(self, value, n=1):
- self.deque.append(value)
- self.count += n
- self.total += value * n
- def synchronize_between_processes(self):
- """
- Warning: does not synchronize the deque!
- """
- t = reduce_across_processes([self.count, self.total])
- t = t.tolist()
- self.count = int(t[0])
- self.total = t[1]
- @property
- def median(self):
- d = torch.tensor(list(self.deque))
- return d.median().item()
- @property
- def avg(self):
- d = torch.tensor(list(self.deque), dtype=torch.float32)
- return d.mean().item()
- @property
- def global_avg(self):
- return self.total / self.count
- @property
- def max(self):
- return max(self.deque)
- @property
- def value(self):
- return self.deque[-1]
- def __str__(self):
- return self.fmt.format(
- median=self.median, avg=self.avg, global_avg=self.global_avg, max=self.max, value=self.value
- )
- class MetricLogger:
- def __init__(self, delimiter="\t"):
- self.meters = defaultdict(SmoothedValue)
- self.delimiter = delimiter
- def update(self, **kwargs):
- for k, v in kwargs.items():
- if isinstance(v, torch.Tensor):
- v = v.item()
- if not isinstance(v, (float, int)):
- raise TypeError(
- f"This method expects the value of the input arguments to be of type float or int, instead got {type(v)}"
- )
- self.meters[k].update(v)
- def __getattr__(self, attr):
- if attr in self.meters:
- return self.meters[attr]
- if attr in self.__dict__:
- return self.__dict__[attr]
- raise AttributeError(f"'{type(self).__name__}' object has no attribute '{attr}'")
- def __str__(self):
- loss_str = []
- for name, meter in self.meters.items():
- loss_str.append(f"{name}: {str(meter)}")
- return self.delimiter.join(loss_str)
- def synchronize_between_processes(self):
- for meter in self.meters.values():
- meter.synchronize_between_processes()
- def add_meter(self, name, **kwargs):
- self.meters[name] = SmoothedValue(**kwargs)
- def log_every(self, iterable, print_freq=5, header=None):
- i = 0
- if not header:
- header = ""
- start_time = time.time()
- end = time.time()
- iter_time = SmoothedValue(fmt="{avg:.4f}")
- data_time = SmoothedValue(fmt="{avg:.4f}")
- space_fmt = ":" + str(len(str(len(iterable)))) + "d"
- if torch.cuda.is_available():
- log_msg = self.delimiter.join(
- [
- header,
- "[{0" + space_fmt + "}/{1}]",
- "eta: {eta}",
- "{meters}",
- "time: {time}",
- "data: {data}",
- "max mem: {memory:.0f}",
- ]
- )
- else:
- log_msg = self.delimiter.join(
- [header, "[{0" + space_fmt + "}/{1}]", "eta: {eta}", "{meters}", "time: {time}", "data: {data}"]
- )
- MB = 1024.0 * 1024.0
- for obj in iterable:
- data_time.update(time.time() - end)
- yield obj
- iter_time.update(time.time() - end)
- if print_freq is not None and i % print_freq == 0:
- eta_seconds = iter_time.global_avg * (len(iterable) - i)
- eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
- if torch.cuda.is_available():
- print(
- log_msg.format(
- i,
- len(iterable),
- eta=eta_string,
- meters=str(self),
- time=str(iter_time),
- data=str(data_time),
- memory=torch.cuda.max_memory_allocated() / MB,
- )
- )
- else:
- print(
- log_msg.format(
- i, len(iterable), eta=eta_string, meters=str(self), time=str(iter_time), data=str(data_time)
- )
- )
- i += 1
- end = time.time()
- total_time = time.time() - start_time
- total_time_str = str(datetime.timedelta(seconds=int(total_time)))
- print(f"{header} Total time: {total_time_str}")
- def compute_metrics(flow_pred, flow_gt, valid_flow_mask=None):
- epe = ((flow_pred - flow_gt) ** 2).sum(dim=1).sqrt()
- flow_norm = (flow_gt**2).sum(dim=1).sqrt()
- if valid_flow_mask is not None:
- epe = epe[valid_flow_mask]
- flow_norm = flow_norm[valid_flow_mask]
- relative_epe = epe / flow_norm
- metrics = {
- "epe": epe.mean().item(),
- "1px": (epe < 1).float().mean().item(),
- "3px": (epe < 3).float().mean().item(),
- "5px": (epe < 5).float().mean().item(),
- "f1": ((epe > 3) & (relative_epe > 0.05)).float().mean().item() * 100,
- }
- return metrics, epe.numel()
- def sequence_loss(flow_preds, flow_gt, valid_flow_mask, gamma=0.8, max_flow=400):
- """Loss function defined over sequence of flow predictions"""
- if gamma > 1:
- raise ValueError(f"Gamma should be < 1, got {gamma}.")
- # exclude invalid pixels and extremely large diplacements
- flow_norm = torch.sum(flow_gt**2, dim=1).sqrt()
- valid_flow_mask = valid_flow_mask & (flow_norm < max_flow)
- valid_flow_mask = valid_flow_mask[:, None, :, :]
- flow_preds = torch.stack(flow_preds) # shape = (num_flow_updates, batch_size, 2, H, W)
- abs_diff = (flow_preds - flow_gt).abs()
- abs_diff = (abs_diff * valid_flow_mask).mean(axis=(1, 2, 3, 4))
- num_predictions = flow_preds.shape[0]
- weights = gamma ** torch.arange(num_predictions - 1, -1, -1).to(flow_gt.device)
- flow_loss = (abs_diff * weights).sum()
- return flow_loss
- class InputPadder:
- """Pads images such that dimensions are divisible by 8"""
- # TODO: Ideally, this should be part of the eval transforms preset, instead
- # of being part of the validation code. It's not obvious what a good
- # solution would be, because we need to unpad the predicted flows according
- # to the input images' size, and in some datasets (Kitti) images can have
- # variable sizes.
- def __init__(self, dims, mode="sintel"):
- self.ht, self.wd = dims[-2:]
- pad_ht = (((self.ht // 8) + 1) * 8 - self.ht) % 8
- pad_wd = (((self.wd // 8) + 1) * 8 - self.wd) % 8
- if mode == "sintel":
- self._pad = [pad_wd // 2, pad_wd - pad_wd // 2, pad_ht // 2, pad_ht - pad_ht // 2]
- else:
- self._pad = [pad_wd // 2, pad_wd - pad_wd // 2, 0, pad_ht]
- def pad(self, *inputs):
- return [F.pad(x, self._pad, mode="replicate") for x in inputs]
- def unpad(self, x):
- ht, wd = x.shape[-2:]
- c = [self._pad[2], ht - self._pad[3], self._pad[0], wd - self._pad[1]]
- return x[..., c[0] : c[1], c[2] : c[3]]
- def _redefine_print(is_main):
- """disables printing when not in main process"""
- import builtins as __builtin__
- builtin_print = __builtin__.print
- def print(*args, **kwargs):
- force = kwargs.pop("force", False)
- if is_main or force:
- builtin_print(*args, **kwargs)
- __builtin__.print = print
- def setup_ddp(args):
- # Set the local_rank, rank, and world_size values as args fields
- # This is done differently depending on how we're running the script. We
- # currently support either torchrun or the custom run_with_submitit.py
- # If you're confused (like I was), this might help a bit
- # https://discuss.pytorch.org/t/what-is-the-difference-between-rank-and-local-rank/61940/2
- if all(key in os.environ for key in ("LOCAL_RANK", "RANK", "WORLD_SIZE")):
- # if we're here, the script was called with torchrun. Otherwise,
- # these args will be set already by the run_with_submitit script
- args.local_rank = int(os.environ["LOCAL_RANK"])
- args.rank = int(os.environ["RANK"])
- args.world_size = int(os.environ["WORLD_SIZE"])
- elif "gpu" in args:
- # if we're here, the script was called by run_with_submitit.py
- args.local_rank = args.gpu
- else:
- print("Not using distributed mode!")
- args.distributed = False
- args.world_size = 1
- return
- args.distributed = True
- _redefine_print(is_main=(args.rank == 0))
- torch.cuda.set_device(args.local_rank)
- dist.init_process_group(
- backend="nccl",
- rank=args.rank,
- world_size=args.world_size,
- init_method=args.dist_url,
- )
- torch.distributed.barrier()
- def reduce_across_processes(val):
- t = torch.tensor(val, device="cuda")
- dist.barrier()
- dist.all_reduce(t)
- return t
- def freeze_batch_norm(model):
- for m in model.modules():
- if isinstance(m, torch.nn.BatchNorm2d):
- m.eval()
|