123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334 |
- r"""PyTorch Detection Training.
- To run in a multi-gpu environment, use the distributed launcher::
- python -m torch.distributed.launch --nproc_per_node=$NGPU --use_env \
- train.py ... --world-size $NGPU
- The default hyperparameters are tuned for training on 8 gpus and 2 images per gpu.
- --lr 0.02 --batch-size 2 --world-size 8
- If you use different number of gpus, the learning rate should be changed to 0.02/8*$NGPU.
- On top of that, for training Faster/Mask R-CNN, the default hyperparameters are
- --epochs 26 --lr-steps 16 22 --aspect-ratio-group-factor 3
- Also, if you train Keypoint R-CNN, the default hyperparameters are
- --epochs 46 --lr-steps 36 43 --aspect-ratio-group-factor 3
- Because the number of images is smaller in the person keypoint subset of COCO,
- the number of epochs should be adapted so that we have the same number of iterations.
- """
- import datetime
- import os
- import time
- import presets
- import torch
- import torch.utils.data
- import torchvision
- import torchvision.models.detection
- import torchvision.models.detection.mask_rcnn
- import utils
- from coco_utils import get_coco
- from engine import evaluate, train_one_epoch
- from group_by_aspect_ratio import create_aspect_ratio_groups, GroupedBatchSampler
- from torchvision.transforms import InterpolationMode
- from transforms import SimpleCopyPaste
- def copypaste_collate_fn(batch):
- copypaste = SimpleCopyPaste(blending=True, resize_interpolation=InterpolationMode.BILINEAR)
- return copypaste(*utils.collate_fn(batch))
- def get_dataset(is_train, args):
- image_set = "train" if is_train else "val"
- num_classes, mode = {"coco": (91, "instances"), "coco_kp": (2, "person_keypoints")}[args.dataset]
- with_masks = "mask" in args.model
- ds = get_coco(
- root=args.data_path,
- image_set=image_set,
- transforms=get_transform(is_train, args),
- mode=mode,
- use_v2=args.use_v2,
- with_masks=with_masks,
- )
- return ds, num_classes
- def get_transform(is_train, args):
- if is_train:
- return presets.DetectionPresetTrain(
- data_augmentation=args.data_augmentation, backend=args.backend, use_v2=args.use_v2
- )
- elif args.weights and args.test_only:
- weights = torchvision.models.get_weight(args.weights)
- trans = weights.transforms()
- return lambda img, target: (trans(img), target)
- else:
- return presets.DetectionPresetEval(backend=args.backend, use_v2=args.use_v2)
- def get_args_parser(add_help=True):
- import argparse
- parser = argparse.ArgumentParser(description="PyTorch Detection Training", add_help=add_help)
- parser.add_argument("--data-path", default="/datasets01/COCO/022719/", type=str, help="dataset path")
- parser.add_argument(
- "--dataset",
- default="coco",
- type=str,
- help="dataset name. Use coco for object detection and instance segmentation and coco_kp for Keypoint detection",
- )
- parser.add_argument("--model", default="maskrcnn_resnet50_fpn", type=str, help="model name")
- parser.add_argument("--device", default="cuda", type=str, help="device (Use cuda or cpu Default: cuda)")
- parser.add_argument(
- "-b", "--batch-size", default=2, type=int, help="images per gpu, the total batch size is $NGPU x batch_size"
- )
- parser.add_argument("--epochs", default=26, type=int, metavar="N", help="number of total epochs to run")
- parser.add_argument(
- "-j", "--workers", default=4, type=int, metavar="N", help="number of data loading workers (default: 4)"
- )
- parser.add_argument("--opt", default="sgd", type=str, help="optimizer")
- parser.add_argument(
- "--lr",
- default=0.02,
- type=float,
- help="initial learning rate, 0.02 is the default value for training on 8 gpus and 2 images_per_gpu",
- )
- parser.add_argument("--momentum", default=0.9, type=float, metavar="M", help="momentum")
- parser.add_argument(
- "--wd",
- "--weight-decay",
- default=1e-4,
- type=float,
- metavar="W",
- help="weight decay (default: 1e-4)",
- dest="weight_decay",
- )
- parser.add_argument(
- "--norm-weight-decay",
- default=None,
- type=float,
- help="weight decay for Normalization layers (default: None, same value as --wd)",
- )
- parser.add_argument(
- "--lr-scheduler", default="multisteplr", type=str, help="name of lr scheduler (default: multisteplr)"
- )
- parser.add_argument(
- "--lr-step-size", default=8, type=int, help="decrease lr every step-size epochs (multisteplr scheduler only)"
- )
- parser.add_argument(
- "--lr-steps",
- default=[16, 22],
- nargs="+",
- type=int,
- help="decrease lr every step-size epochs (multisteplr scheduler only)",
- )
- parser.add_argument(
- "--lr-gamma", default=0.1, type=float, help="decrease lr by a factor of lr-gamma (multisteplr scheduler only)"
- )
- parser.add_argument("--print-freq", default=20, type=int, help="print frequency")
- parser.add_argument("--output-dir", default=".", type=str, help="path to save outputs")
- parser.add_argument("--resume", default="", type=str, help="path of checkpoint")
- parser.add_argument("--start_epoch", default=0, type=int, help="start epoch")
- parser.add_argument("--aspect-ratio-group-factor", default=3, type=int)
- parser.add_argument("--rpn-score-thresh", default=None, type=float, help="rpn score threshold for faster-rcnn")
- parser.add_argument(
- "--trainable-backbone-layers", default=None, type=int, help="number of trainable layers of backbone"
- )
- parser.add_argument(
- "--data-augmentation", default="hflip", type=str, help="data augmentation policy (default: hflip)"
- )
- parser.add_argument(
- "--sync-bn",
- dest="sync_bn",
- help="Use sync batch norm",
- action="store_true",
- )
- parser.add_argument(
- "--test-only",
- dest="test_only",
- help="Only test the model",
- action="store_true",
- )
- parser.add_argument(
- "--use-deterministic-algorithms", action="store_true", help="Forces the use of deterministic algorithms only."
- )
- # distributed training parameters
- parser.add_argument("--world-size", default=1, type=int, help="number of distributed processes")
- parser.add_argument("--dist-url", default="env://", type=str, help="url used to set up distributed training")
- parser.add_argument("--weights", default=None, type=str, help="the weights enum name to load")
- parser.add_argument("--weights-backbone", default=None, type=str, help="the backbone weights enum name to load")
- # Mixed precision training parameters
- parser.add_argument("--amp", action="store_true", help="Use torch.cuda.amp for mixed precision training")
- # Use CopyPaste augmentation training parameter
- parser.add_argument(
- "--use-copypaste",
- action="store_true",
- help="Use CopyPaste data augmentation. Works only with data-augmentation='lsj'.",
- )
- parser.add_argument("--backend", default="PIL", type=str.lower, help="PIL or tensor - case insensitive")
- parser.add_argument("--use-v2", action="store_true", help="Use V2 transforms")
- return parser
- def main(args):
- if args.backend.lower() == "tv_tensor" and not args.use_v2:
- raise ValueError("Use --use-v2 if you want to use the tv_tensor backend.")
- if args.dataset not in ("coco", "coco_kp"):
- raise ValueError(f"Dataset should be coco or coco_kp, got {args.dataset}")
- if "keypoint" in args.model and args.dataset != "coco_kp":
- raise ValueError("Oops, if you want Keypoint detection, set --dataset coco_kp")
- if args.dataset == "coco_kp" and args.use_v2:
- raise ValueError("KeyPoint detection doesn't support V2 transforms yet")
- if args.output_dir:
- utils.mkdir(args.output_dir)
- utils.init_distributed_mode(args)
- print(args)
- device = torch.device(args.device)
- if args.use_deterministic_algorithms:
- torch.use_deterministic_algorithms(True)
- # Data loading code
- print("Loading data")
- dataset, num_classes = get_dataset(is_train=True, args=args)
- dataset_test, _ = get_dataset(is_train=False, args=args)
- print("Creating data loaders")
- if args.distributed:
- train_sampler = torch.utils.data.distributed.DistributedSampler(dataset)
- test_sampler = torch.utils.data.distributed.DistributedSampler(dataset_test, shuffle=False)
- else:
- train_sampler = torch.utils.data.RandomSampler(dataset)
- test_sampler = torch.utils.data.SequentialSampler(dataset_test)
- if args.aspect_ratio_group_factor >= 0:
- group_ids = create_aspect_ratio_groups(dataset, k=args.aspect_ratio_group_factor)
- train_batch_sampler = GroupedBatchSampler(train_sampler, group_ids, args.batch_size)
- else:
- train_batch_sampler = torch.utils.data.BatchSampler(train_sampler, args.batch_size, drop_last=True)
- train_collate_fn = utils.collate_fn
- if args.use_copypaste:
- if args.data_augmentation != "lsj":
- raise RuntimeError("SimpleCopyPaste algorithm currently only supports the 'lsj' data augmentation policies")
- train_collate_fn = copypaste_collate_fn
- data_loader = torch.utils.data.DataLoader(
- dataset, batch_sampler=train_batch_sampler, num_workers=args.workers, collate_fn=train_collate_fn
- )
- data_loader_test = torch.utils.data.DataLoader(
- dataset_test, batch_size=1, sampler=test_sampler, num_workers=args.workers, collate_fn=utils.collate_fn
- )
- print("Creating model")
- kwargs = {"trainable_backbone_layers": args.trainable_backbone_layers}
- if args.data_augmentation in ["multiscale", "lsj"]:
- kwargs["_skip_resize"] = True
- if "rcnn" in args.model:
- if args.rpn_score_thresh is not None:
- kwargs["rpn_score_thresh"] = args.rpn_score_thresh
- model = torchvision.models.get_model(
- args.model, weights=args.weights, weights_backbone=args.weights_backbone, num_classes=num_classes, **kwargs
- )
- model.to(device)
- if args.distributed and args.sync_bn:
- model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
- model_without_ddp = model
- if args.distributed:
- model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
- model_without_ddp = model.module
- if args.norm_weight_decay is None:
- parameters = [p for p in model.parameters() if p.requires_grad]
- else:
- param_groups = torchvision.ops._utils.split_normalization_params(model)
- wd_groups = [args.norm_weight_decay, args.weight_decay]
- parameters = [{"params": p, "weight_decay": w} for p, w in zip(param_groups, wd_groups) if p]
- opt_name = args.opt.lower()
- if opt_name.startswith("sgd"):
- optimizer = torch.optim.SGD(
- parameters,
- lr=args.lr,
- momentum=args.momentum,
- weight_decay=args.weight_decay,
- nesterov="nesterov" in opt_name,
- )
- elif opt_name == "adamw":
- optimizer = torch.optim.AdamW(parameters, lr=args.lr, weight_decay=args.weight_decay)
- else:
- raise RuntimeError(f"Invalid optimizer {args.opt}. Only SGD and AdamW are supported.")
- scaler = torch.cuda.amp.GradScaler() if args.amp else None
- args.lr_scheduler = args.lr_scheduler.lower()
- if args.lr_scheduler == "multisteplr":
- lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=args.lr_steps, gamma=args.lr_gamma)
- elif args.lr_scheduler == "cosineannealinglr":
- lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=args.epochs)
- else:
- raise RuntimeError(
- f"Invalid lr scheduler '{args.lr_scheduler}'. Only MultiStepLR and CosineAnnealingLR are supported."
- )
- if args.resume:
- checkpoint = torch.load(args.resume, map_location="cpu")
- model_without_ddp.load_state_dict(checkpoint["model"])
- optimizer.load_state_dict(checkpoint["optimizer"])
- lr_scheduler.load_state_dict(checkpoint["lr_scheduler"])
- args.start_epoch = checkpoint["epoch"] + 1
- if args.amp:
- scaler.load_state_dict(checkpoint["scaler"])
- if args.test_only:
- torch.backends.cudnn.deterministic = True
- evaluate(model, data_loader_test, device=device)
- return
- print("Start training")
- start_time = time.time()
- for epoch in range(args.start_epoch, args.epochs):
- if args.distributed:
- train_sampler.set_epoch(epoch)
- train_one_epoch(model, optimizer, data_loader, device, epoch, args.print_freq, scaler)
- lr_scheduler.step()
- if args.output_dir:
- checkpoint = {
- "model": model_without_ddp.state_dict(),
- "optimizer": optimizer.state_dict(),
- "lr_scheduler": lr_scheduler.state_dict(),
- "args": args,
- "epoch": epoch,
- }
- if args.amp:
- checkpoint["scaler"] = scaler.state_dict()
- utils.save_on_master(checkpoint, os.path.join(args.output_dir, f"model_{epoch}.pth"))
- utils.save_on_master(checkpoint, os.path.join(args.output_dir, "checkpoint.pth"))
- # evaluate after every epoch
- evaluate(model, data_loader_test, device=device)
- total_time = time.time() - start_time
- total_time_str = str(datetime.timedelta(seconds=int(total_time)))
- print(f"Training time {total_time_str}")
- if __name__ == "__main__":
- args = get_args_parser().parse_args()
- main(args)
|