presets.py 3.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114
  1. from collections import defaultdict
  2. import torch
  3. import transforms as reference_transforms
  4. def get_modules(use_v2):
  5. # We need a protected import to avoid the V2 warning in case just V1 is used
  6. if use_v2:
  7. import torchvision.transforms.v2
  8. import torchvision.tv_tensors
  9. return torchvision.transforms.v2, torchvision.tv_tensors
  10. else:
  11. return reference_transforms, None
  12. class DetectionPresetTrain:
  13. # Note: this transform assumes that the input to forward() are always PIL
  14. # images, regardless of the backend parameter.
  15. def __init__(
  16. self,
  17. *,
  18. data_augmentation,
  19. hflip_prob=0.5,
  20. mean=(123.0, 117.0, 104.0),
  21. backend="pil",
  22. use_v2=False,
  23. ):
  24. T, tv_tensors = get_modules(use_v2)
  25. transforms = []
  26. backend = backend.lower()
  27. if backend == "tv_tensor":
  28. transforms.append(T.ToImage())
  29. elif backend == "tensor":
  30. transforms.append(T.PILToTensor())
  31. elif backend != "pil":
  32. raise ValueError(f"backend can be 'tv_tensor', 'tensor' or 'pil', but got {backend}")
  33. if data_augmentation == "hflip":
  34. transforms += [T.RandomHorizontalFlip(p=hflip_prob)]
  35. elif data_augmentation == "lsj":
  36. transforms += [
  37. T.ScaleJitter(target_size=(1024, 1024), antialias=True),
  38. # TODO: FixedSizeCrop below doesn't work on tensors!
  39. reference_transforms.FixedSizeCrop(size=(1024, 1024), fill=mean),
  40. T.RandomHorizontalFlip(p=hflip_prob),
  41. ]
  42. elif data_augmentation == "multiscale":
  43. transforms += [
  44. T.RandomShortestSize(min_size=(480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800), max_size=1333),
  45. T.RandomHorizontalFlip(p=hflip_prob),
  46. ]
  47. elif data_augmentation == "ssd":
  48. fill = defaultdict(lambda: mean, {tv_tensors.Mask: 0}) if use_v2 else list(mean)
  49. transforms += [
  50. T.RandomPhotometricDistort(),
  51. T.RandomZoomOut(fill=fill),
  52. T.RandomIoUCrop(),
  53. T.RandomHorizontalFlip(p=hflip_prob),
  54. ]
  55. elif data_augmentation == "ssdlite":
  56. transforms += [
  57. T.RandomIoUCrop(),
  58. T.RandomHorizontalFlip(p=hflip_prob),
  59. ]
  60. else:
  61. raise ValueError(f'Unknown data augmentation policy "{data_augmentation}"')
  62. if backend == "pil":
  63. # Note: we could just convert to pure tensors even in v2.
  64. transforms += [T.ToImage() if use_v2 else T.PILToTensor()]
  65. transforms += [T.ToDtype(torch.float, scale=True)]
  66. if use_v2:
  67. transforms += [
  68. T.ConvertBoundingBoxFormat(tv_tensors.BoundingBoxFormat.XYXY),
  69. T.SanitizeBoundingBoxes(),
  70. T.ToPureTensor(),
  71. ]
  72. self.transforms = T.Compose(transforms)
  73. def __call__(self, img, target):
  74. return self.transforms(img, target)
  75. class DetectionPresetEval:
  76. def __init__(self, backend="pil", use_v2=False):
  77. T, _ = get_modules(use_v2)
  78. transforms = []
  79. backend = backend.lower()
  80. if backend == "pil":
  81. # Note: we could just convert to pure tensors even in v2?
  82. transforms += [T.ToImage() if use_v2 else T.PILToTensor()]
  83. elif backend == "tensor":
  84. transforms += [T.PILToTensor()]
  85. elif backend == "tv_tensor":
  86. transforms += [T.ToImage()]
  87. else:
  88. raise ValueError(f"backend can be 'tv_tensor', 'tensor' or 'pil', but got {backend}")
  89. transforms += [T.ToDtype(torch.float, scale=True)]
  90. if use_v2:
  91. transforms += [T.ToPureTensor()]
  92. self.transforms = T.Compose(transforms)
  93. def __call__(self, img, target):
  94. return self.transforms(img, target)