123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114 |
- from collections import defaultdict
- import torch
- import transforms as reference_transforms
- def get_modules(use_v2):
- # We need a protected import to avoid the V2 warning in case just V1 is used
- if use_v2:
- import torchvision.transforms.v2
- import torchvision.tv_tensors
- return torchvision.transforms.v2, torchvision.tv_tensors
- else:
- return reference_transforms, None
- class DetectionPresetTrain:
- # Note: this transform assumes that the input to forward() are always PIL
- # images, regardless of the backend parameter.
- def __init__(
- self,
- *,
- data_augmentation,
- hflip_prob=0.5,
- mean=(123.0, 117.0, 104.0),
- backend="pil",
- use_v2=False,
- ):
- T, tv_tensors = get_modules(use_v2)
- transforms = []
- backend = backend.lower()
- if backend == "tv_tensor":
- transforms.append(T.ToImage())
- elif backend == "tensor":
- transforms.append(T.PILToTensor())
- elif backend != "pil":
- raise ValueError(f"backend can be 'tv_tensor', 'tensor' or 'pil', but got {backend}")
- if data_augmentation == "hflip":
- transforms += [T.RandomHorizontalFlip(p=hflip_prob)]
- elif data_augmentation == "lsj":
- transforms += [
- T.ScaleJitter(target_size=(1024, 1024), antialias=True),
- # TODO: FixedSizeCrop below doesn't work on tensors!
- reference_transforms.FixedSizeCrop(size=(1024, 1024), fill=mean),
- T.RandomHorizontalFlip(p=hflip_prob),
- ]
- elif data_augmentation == "multiscale":
- transforms += [
- T.RandomShortestSize(min_size=(480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800), max_size=1333),
- T.RandomHorizontalFlip(p=hflip_prob),
- ]
- elif data_augmentation == "ssd":
- fill = defaultdict(lambda: mean, {tv_tensors.Mask: 0}) if use_v2 else list(mean)
- transforms += [
- T.RandomPhotometricDistort(),
- T.RandomZoomOut(fill=fill),
- T.RandomIoUCrop(),
- T.RandomHorizontalFlip(p=hflip_prob),
- ]
- elif data_augmentation == "ssdlite":
- transforms += [
- T.RandomIoUCrop(),
- T.RandomHorizontalFlip(p=hflip_prob),
- ]
- else:
- raise ValueError(f'Unknown data augmentation policy "{data_augmentation}"')
- if backend == "pil":
- # Note: we could just convert to pure tensors even in v2.
- transforms += [T.ToImage() if use_v2 else T.PILToTensor()]
- transforms += [T.ToDtype(torch.float, scale=True)]
- if use_v2:
- transforms += [
- T.ConvertBoundingBoxFormat(tv_tensors.BoundingBoxFormat.XYXY),
- T.SanitizeBoundingBoxes(),
- T.ToPureTensor(),
- ]
- self.transforms = T.Compose(transforms)
- def __call__(self, img, target):
- return self.transforms(img, target)
- class DetectionPresetEval:
- def __init__(self, backend="pil", use_v2=False):
- T, _ = get_modules(use_v2)
- transforms = []
- backend = backend.lower()
- if backend == "pil":
- # Note: we could just convert to pure tensors even in v2?
- transforms += [T.ToImage() if use_v2 else T.PILToTensor()]
- elif backend == "tensor":
- transforms += [T.PILToTensor()]
- elif backend == "tv_tensor":
- transforms += [T.ToImage()]
- else:
- raise ValueError(f"backend can be 'tv_tensor', 'tensor' or 'pil', but got {backend}")
- transforms += [T.ToDtype(torch.float, scale=True)]
- if use_v2:
- transforms += [T.ToPureTensor()]
- self.transforms = T.Compose(transforms)
- def __call__(self, img, target):
- return self.transforms(img, target)
|