123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115 |
- import math
- import sys
- import time
- import torch
- import torchvision.models.detection.mask_rcnn
- import utils
- from coco_eval import CocoEvaluator
- from coco_utils import get_coco_api_from_dataset
- def train_one_epoch(model, optimizer, data_loader, device, epoch, print_freq, scaler=None):
- model.train()
- metric_logger = utils.MetricLogger(delimiter=" ")
- metric_logger.add_meter("lr", utils.SmoothedValue(window_size=1, fmt="{value:.6f}"))
- header = f"Epoch: [{epoch}]"
- lr_scheduler = None
- if epoch == 0:
- warmup_factor = 1.0 / 1000
- warmup_iters = min(1000, len(data_loader) - 1)
- lr_scheduler = torch.optim.lr_scheduler.LinearLR(
- optimizer, start_factor=warmup_factor, total_iters=warmup_iters
- )
- for images, targets in metric_logger.log_every(data_loader, print_freq, header):
- images = list(image.to(device) for image in images)
- targets = [{k: v.to(device) if isinstance(v, torch.Tensor) else v for k, v in t.items()} for t in targets]
- with torch.cuda.amp.autocast(enabled=scaler is not None):
- loss_dict = model(images, targets)
- losses = sum(loss for loss in loss_dict.values())
- # reduce losses over all GPUs for logging purposes
- loss_dict_reduced = utils.reduce_dict(loss_dict)
- losses_reduced = sum(loss for loss in loss_dict_reduced.values())
- loss_value = losses_reduced.item()
- if not math.isfinite(loss_value):
- print(f"Loss is {loss_value}, stopping training")
- print(loss_dict_reduced)
- sys.exit(1)
- optimizer.zero_grad()
- if scaler is not None:
- scaler.scale(losses).backward()
- scaler.step(optimizer)
- scaler.update()
- else:
- losses.backward()
- optimizer.step()
- if lr_scheduler is not None:
- lr_scheduler.step()
- metric_logger.update(loss=losses_reduced, **loss_dict_reduced)
- metric_logger.update(lr=optimizer.param_groups[0]["lr"])
- return metric_logger
- def _get_iou_types(model):
- model_without_ddp = model
- if isinstance(model, torch.nn.parallel.DistributedDataParallel):
- model_without_ddp = model.module
- iou_types = ["bbox"]
- if isinstance(model_without_ddp, torchvision.models.detection.MaskRCNN):
- iou_types.append("segm")
- if isinstance(model_without_ddp, torchvision.models.detection.KeypointRCNN):
- iou_types.append("keypoints")
- return iou_types
- @torch.inference_mode()
- def evaluate(model, data_loader, device):
- n_threads = torch.get_num_threads()
- # FIXME remove this and make paste_masks_in_image run on the GPU
- torch.set_num_threads(1)
- cpu_device = torch.device("cpu")
- model.eval()
- metric_logger = utils.MetricLogger(delimiter=" ")
- header = "Test:"
- coco = get_coco_api_from_dataset(data_loader.dataset)
- iou_types = _get_iou_types(model)
- coco_evaluator = CocoEvaluator(coco, iou_types)
- for images, targets in metric_logger.log_every(data_loader, 100, header):
- images = list(img.to(device) for img in images)
- if torch.cuda.is_available():
- torch.cuda.synchronize()
- model_time = time.time()
- outputs = model(images)
- outputs = [{k: v.to(cpu_device) for k, v in t.items()} for t in outputs]
- model_time = time.time() - model_time
- res = {target["image_id"]: output for target, output in zip(targets, outputs)}
- evaluator_time = time.time()
- coco_evaluator.update(res)
- evaluator_time = time.time() - evaluator_time
- metric_logger.update(model_time=model_time, evaluator_time=evaluator_time)
- # gather the stats from all processes
- metric_logger.synchronize_between_processes()
- print("Averaged stats:", metric_logger)
- coco_evaluator.synchronize_between_processes()
- # accumulate predictions from all images
- coco_evaluator.accumulate()
- coco_evaluator.summarize()
- torch.set_num_threads(n_threads)
- return coco_evaluator
|