123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192 |
- import copy
- import io
- from contextlib import redirect_stdout
- import numpy as np
- import pycocotools.mask as mask_util
- import torch
- import utils
- from pycocotools.coco import COCO
- from pycocotools.cocoeval import COCOeval
- class CocoEvaluator:
- def __init__(self, coco_gt, iou_types):
- if not isinstance(iou_types, (list, tuple)):
- raise TypeError(f"This constructor expects iou_types of type list or tuple, instead got {type(iou_types)}")
- coco_gt = copy.deepcopy(coco_gt)
- self.coco_gt = coco_gt
- self.iou_types = iou_types
- self.coco_eval = {}
- for iou_type in iou_types:
- self.coco_eval[iou_type] = COCOeval(coco_gt, iouType=iou_type)
- self.img_ids = []
- self.eval_imgs = {k: [] for k in iou_types}
- def update(self, predictions):
- img_ids = list(np.unique(list(predictions.keys())))
- self.img_ids.extend(img_ids)
- for iou_type in self.iou_types:
- results = self.prepare(predictions, iou_type)
- with redirect_stdout(io.StringIO()):
- coco_dt = COCO.loadRes(self.coco_gt, results) if results else COCO()
- coco_eval = self.coco_eval[iou_type]
- coco_eval.cocoDt = coco_dt
- coco_eval.params.imgIds = list(img_ids)
- img_ids, eval_imgs = evaluate(coco_eval)
- self.eval_imgs[iou_type].append(eval_imgs)
- def synchronize_between_processes(self):
- for iou_type in self.iou_types:
- self.eval_imgs[iou_type] = np.concatenate(self.eval_imgs[iou_type], 2)
- create_common_coco_eval(self.coco_eval[iou_type], self.img_ids, self.eval_imgs[iou_type])
- def accumulate(self):
- for coco_eval in self.coco_eval.values():
- coco_eval.accumulate()
- def summarize(self):
- for iou_type, coco_eval in self.coco_eval.items():
- print(f"IoU metric: {iou_type}")
- coco_eval.summarize()
- def prepare(self, predictions, iou_type):
- if iou_type == "bbox":
- return self.prepare_for_coco_detection(predictions)
- if iou_type == "segm":
- return self.prepare_for_coco_segmentation(predictions)
- if iou_type == "keypoints":
- return self.prepare_for_coco_keypoint(predictions)
- raise ValueError(f"Unknown iou type {iou_type}")
- def prepare_for_coco_detection(self, predictions):
- coco_results = []
- for original_id, prediction in predictions.items():
- if len(prediction) == 0:
- continue
- boxes = prediction["boxes"]
- boxes = convert_to_xywh(boxes).tolist()
- scores = prediction["scores"].tolist()
- labels = prediction["labels"].tolist()
- coco_results.extend(
- [
- {
- "image_id": original_id,
- "category_id": labels[k],
- "bbox": box,
- "score": scores[k],
- }
- for k, box in enumerate(boxes)
- ]
- )
- return coco_results
- def prepare_for_coco_segmentation(self, predictions):
- coco_results = []
- for original_id, prediction in predictions.items():
- if len(prediction) == 0:
- continue
- scores = prediction["scores"]
- labels = prediction["labels"]
- masks = prediction["masks"]
- masks = masks > 0.5
- scores = prediction["scores"].tolist()
- labels = prediction["labels"].tolist()
- rles = [
- mask_util.encode(np.array(mask[0, :, :, np.newaxis], dtype=np.uint8, order="F"))[0] for mask in masks
- ]
- for rle in rles:
- rle["counts"] = rle["counts"].decode("utf-8")
- coco_results.extend(
- [
- {
- "image_id": original_id,
- "category_id": labels[k],
- "segmentation": rle,
- "score": scores[k],
- }
- for k, rle in enumerate(rles)
- ]
- )
- return coco_results
- def prepare_for_coco_keypoint(self, predictions):
- coco_results = []
- for original_id, prediction in predictions.items():
- if len(prediction) == 0:
- continue
- boxes = prediction["boxes"]
- boxes = convert_to_xywh(boxes).tolist()
- scores = prediction["scores"].tolist()
- labels = prediction["labels"].tolist()
- keypoints = prediction["keypoints"]
- keypoints = keypoints.flatten(start_dim=1).tolist()
- coco_results.extend(
- [
- {
- "image_id": original_id,
- "category_id": labels[k],
- "keypoints": keypoint,
- "score": scores[k],
- }
- for k, keypoint in enumerate(keypoints)
- ]
- )
- return coco_results
- def convert_to_xywh(boxes):
- xmin, ymin, xmax, ymax = boxes.unbind(1)
- return torch.stack((xmin, ymin, xmax - xmin, ymax - ymin), dim=1)
- def merge(img_ids, eval_imgs):
- all_img_ids = utils.all_gather(img_ids)
- all_eval_imgs = utils.all_gather(eval_imgs)
- merged_img_ids = []
- for p in all_img_ids:
- merged_img_ids.extend(p)
- merged_eval_imgs = []
- for p in all_eval_imgs:
- merged_eval_imgs.append(p)
- merged_img_ids = np.array(merged_img_ids)
- merged_eval_imgs = np.concatenate(merged_eval_imgs, 2)
- # keep only unique (and in sorted order) images
- merged_img_ids, idx = np.unique(merged_img_ids, return_index=True)
- merged_eval_imgs = merged_eval_imgs[..., idx]
- return merged_img_ids, merged_eval_imgs
- def create_common_coco_eval(coco_eval, img_ids, eval_imgs):
- img_ids, eval_imgs = merge(img_ids, eval_imgs)
- img_ids = list(img_ids)
- eval_imgs = list(eval_imgs.flatten())
- coco_eval.evalImgs = eval_imgs
- coco_eval.params.imgIds = img_ids
- coco_eval._paramsEval = copy.deepcopy(coco_eval.params)
- def evaluate(imgs):
- with redirect_stdout(io.StringIO()):
- imgs.evaluate()
- return imgs.params.imgIds, np.asarray(imgs.evalImgs).reshape(-1, len(imgs.params.areaRng), len(imgs.params.imgIds))
|