1234567891011121314151617181920212223242526272829303132333435363738394041424344 |
- #include <iostream>
- #include <torch/script.h>
- #include <torch/torch.h>
- #include <torchvision/vision.h>
- int main() {
- torch::DeviceType device_type;
- device_type = torch::kCPU;
- torch::jit::script::Module model;
- try {
- std::cout << "Loading model\n";
- // Deserialize the ScriptModule from a file using torch::jit::load().
- model = torch::jit::load("resnet18.pt");
- std::cout << "Model loaded\n";
- } catch (const torch::Error& e) {
- std::cout << "error loading the model\n";
- return -1;
- } catch (const std::exception& e) {
- std::cout << "Other error: " << e.what() << "\n";
- return -1;
- }
- // TorchScript models require a List[IValue] as input
- std::vector<torch::jit::IValue> inputs;
- // Create a random input tensor and run it through the model.
- inputs.push_back(torch::rand({1, 3, 10, 10}));
- auto out = model.forward(inputs);
- std::cout << out << "\n";
- if (torch::cuda::is_available()) {
- // Move model and inputs to GPU
- model.to(torch::kCUDA);
- // Add GPU inputs
- inputs.clear();
- torch::TensorOptions options = torch::TensorOptions{torch::kCUDA};
- inputs.push_back(torch::rand({1, 3, 10, 10}, options));
- auto gpu_out = model.forward(inputs);
- std::cout << gpu_out << "\n";
- }
- }
|