shufflenetv2_quant.rst 888 B

123456789101112131415161718192021222324252627
  1. Quantized ShuffleNet V2
  2. =======================
  3. .. currentmodule:: torchvision.models.quantization
  4. The Quantized ShuffleNet V2 model is based on the `ShuffleNet V2: Practical Guidelines for Efficient
  5. CNN Architecture Design <https://arxiv.org/abs/1807.11164>`__ paper.
  6. Model builders
  7. --------------
  8. The following model builders can be used to instantiate a quantized ShuffleNetV2
  9. model, with or without pre-trained weights. All the model builders internally rely
  10. on the ``torchvision.models.quantization.shufflenetv2.QuantizableShuffleNetV2``
  11. base class. Please refer to the `source code
  12. <https://github.com/pytorch/vision/blob/main/torchvision/models/quantization/shufflenetv2.py>`_
  13. for more details about this class.
  14. .. autosummary::
  15. :toctree: generated/
  16. :template: function.rst
  17. shufflenet_v2_x0_5
  18. shufflenet_v2_x1_0
  19. shufflenet_v2_x1_5
  20. shufflenet_v2_x2_0