123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524 |
- #!/usr/bin/env python3
- #
- # PyTorch documentation build configuration file, created by
- # sphinx-quickstart on Fri Dec 23 13:31:47 2016.
- #
- # This file is execfile()d with the current directory set to its
- # containing dir.
- #
- # Note that not all possible configuration values are present in this
- # autogenerated file.
- #
- # All configuration values have a default; values that are commented out
- # serve to show the default.
- # If extensions (or modules to document with autodoc) are in another directory,
- # add these directories to sys.path here. If the directory is relative to the
- # documentation root, use os.path.abspath to make it absolute, like shown here.
- #
- # import os
- # import sys
- # sys.path.insert(0, os.path.abspath('.'))
- import os
- import sys
- import textwrap
- from copy import copy
- from pathlib import Path
- import pytorch_sphinx_theme
- import torchvision
- import torchvision.models as M
- from sphinx_gallery.sorting import ExplicitOrder
- from tabulate import tabulate
- sys.path.append(os.path.abspath("."))
- # -- General configuration ------------------------------------------------
- # Required version of sphinx is set from docs/requirements.txt
- # Add any Sphinx extension module names here, as strings. They can be
- # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom
- # ones.
- extensions = [
- "sphinx.ext.autodoc",
- "sphinx.ext.autosummary",
- "sphinx.ext.doctest",
- "sphinx.ext.intersphinx",
- "sphinx.ext.todo",
- "sphinx.ext.mathjax",
- "sphinx.ext.napoleon",
- "sphinx.ext.viewcode",
- "sphinx.ext.duration",
- "sphinx_gallery.gen_gallery",
- "sphinx_copybutton",
- "beta_status",
- ]
- # We override sphinx-gallery's example header to prevent sphinx-gallery from
- # creating a note at the top of the renderred notebook.
- # https://github.com/sphinx-gallery/sphinx-gallery/blob/451ccba1007cc523f39cbcc960ebc21ca39f7b75/sphinx_gallery/gen_rst.py#L1267-L1271
- # This is because we also want to add a link to google collab, so we write our own note in each example.
- from sphinx_gallery import gen_rst
- gen_rst.EXAMPLE_HEADER = """
- .. DO NOT EDIT.
- .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY.
- .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE:
- .. "{0}"
- .. LINE NUMBERS ARE GIVEN BELOW.
- .. rst-class:: sphx-glr-example-title
- .. _sphx_glr_{1}:
- """
- class CustomGalleryExampleSortKey:
- # See https://sphinx-gallery.github.io/stable/configuration.html#sorting-gallery-examples
- # and https://github.com/sphinx-gallery/sphinx-gallery/blob/master/sphinx_gallery/sorting.py
- def __init__(self, src_dir):
- self.src_dir = src_dir
- transforms_subsection_order = [
- "plot_transforms_getting_started.py",
- "plot_transforms_illustrations.py",
- "plot_transforms_e2e.py",
- "plot_cutmix_mixup.py",
- "plot_custom_transforms.py",
- "plot_tv_tensors.py",
- "plot_custom_tv_tensors.py",
- ]
- def __call__(self, filename):
- if "gallery/transforms" in self.src_dir:
- try:
- return self.transforms_subsection_order.index(filename)
- except ValueError as e:
- raise ValueError(
- "Looks like you added an example in gallery/transforms? "
- "You need to specify its order in docs/source/conf.py. Look for CustomGalleryExampleSortKey."
- ) from e
- else:
- # For other subsections we just sort alphabetically by filename
- return filename
- sphinx_gallery_conf = {
- "examples_dirs": "../../gallery/", # path to your example scripts
- "gallery_dirs": "auto_examples", # path to where to save gallery generated output
- "subsection_order": ExplicitOrder(["../../gallery/transforms", "../../gallery/others"]),
- "backreferences_dir": "gen_modules/backreferences",
- "doc_module": ("torchvision",),
- "remove_config_comments": True,
- "ignore_pattern": "helpers.py",
- "within_subsection_order": CustomGalleryExampleSortKey,
- }
- napoleon_use_ivar = True
- napoleon_numpy_docstring = False
- napoleon_google_docstring = True
- # Add any paths that contain templates here, relative to this directory.
- templates_path = ["_templates"]
- # The suffix(es) of source filenames.
- # You can specify multiple suffix as a list of string:
- #
- source_suffix = {
- ".rst": "restructuredtext",
- }
- # The master toctree document.
- master_doc = "index"
- # General information about the project.
- project = "Torchvision"
- copyright = "2017-present, Torch Contributors"
- author = "Torch Contributors"
- # The version info for the project you're documenting, acts as replacement for
- # |version| and |release|, also used in various other places throughout the
- # built documents.
- # version: The short X.Y version.
- # release: The full version, including alpha/beta/rc tags.
- if os.environ.get("TORCHVISION_SANITIZE_VERSION_STR_IN_DOCS", None):
- # Turn 1.11.0aHASH into 1.11 (major.minor only)
- version = release = ".".join(torchvision.__version__.split(".")[:2])
- html_title = " ".join((project, version, "documentation"))
- else:
- version = f"main ({torchvision.__version__})"
- release = "main"
- # The language for content autogenerated by Sphinx. Refer to documentation
- # for a list of supported languages.
- #
- # This is also used if you do content translation via gettext catalogs.
- # Usually you set "language" from the command line for these cases.
- language = "en"
- # List of patterns, relative to source directory, that match files and
- # directories to ignore when looking for source files.
- # This patterns also effect to html_static_path and html_extra_path
- exclude_patterns = []
- # The name of the Pygments (syntax highlighting) style to use.
- pygments_style = "sphinx"
- # If true, `todo` and `todoList` produce output, else they produce nothing.
- todo_include_todos = True
- # -- Options for HTML output ----------------------------------------------
- # The theme to use for HTML and HTML Help pages. See the documentation for
- # a list of builtin themes.
- #
- html_theme = "pytorch_sphinx_theme"
- html_theme_path = [pytorch_sphinx_theme.get_html_theme_path()]
- # Theme options are theme-specific and customize the look and feel of a theme
- # further. For a list of options available for each theme, see the
- # documentation.
- #
- html_theme_options = {
- "collapse_navigation": False,
- "display_version": True,
- "logo_only": True,
- "pytorch_project": "docs",
- "navigation_with_keys": True,
- "analytics_id": "GTM-T8XT4PS",
- }
- html_logo = "_static/img/pytorch-logo-dark.svg"
- # Add any paths that contain custom static files (such as style sheets) here,
- # relative to this directory. They are copied after the builtin static files,
- # so a file named "default.css" will overwrite the builtin "default.css".
- html_static_path = ["_static"]
- # TODO: remove this once https://github.com/pytorch/pytorch_sphinx_theme/issues/125 is fixed
- html_css_files = [
- "css/custom_torchvision.css",
- ]
- # -- Options for HTMLHelp output ------------------------------------------
- # Output file base name for HTML help builder.
- htmlhelp_basename = "PyTorchdoc"
- autosummary_generate = True
- # -- Options for LaTeX output ---------------------------------------------
- latex_elements = {
- # The paper size ('letterpaper' or 'a4paper').
- #
- # 'papersize': 'letterpaper',
- # The font size ('10pt', '11pt' or '12pt').
- #
- # 'pointsize': '10pt',
- # Additional stuff for the LaTeX preamble.
- #
- # 'preamble': '',
- # Latex figure (float) alignment
- #
- # 'figure_align': 'htbp',
- }
- # Grouping the document tree into LaTeX files. List of tuples
- # (source start file, target name, title,
- # author, documentclass [howto, manual, or own class]).
- latex_documents = [
- (master_doc, "pytorch.tex", "torchvision Documentation", "Torch Contributors", "manual"),
- ]
- # -- Options for manual page output ---------------------------------------
- # One entry per manual page. List of tuples
- # (source start file, name, description, authors, manual section).
- man_pages = [(master_doc, "torchvision", "torchvision Documentation", [author], 1)]
- # -- Options for Texinfo output -------------------------------------------
- # Grouping the document tree into Texinfo files. List of tuples
- # (source start file, target name, title, author,
- # dir menu entry, description, category)
- texinfo_documents = [
- (
- master_doc,
- "torchvision",
- "torchvision Documentation",
- author,
- "torchvision",
- "One line description of project.",
- "Miscellaneous",
- ),
- ]
- # Example configuration for intersphinx: refer to the Python standard library.
- intersphinx_mapping = {
- "python": ("https://docs.python.org/3/", None),
- "torch": ("https://pytorch.org/docs/stable/", None),
- "numpy": ("https://numpy.org/doc/stable/", None),
- "PIL": ("https://pillow.readthedocs.io/en/stable/", None),
- "matplotlib": ("https://matplotlib.org/stable/", None),
- }
- # -- A patch that prevents Sphinx from cross-referencing ivar tags -------
- # See http://stackoverflow.com/a/41184353/3343043
- from docutils import nodes
- from sphinx import addnodes
- from sphinx.util.docfields import TypedField
- def patched_make_field(self, types, domain, items, **kw):
- # `kw` catches `env=None` needed for newer sphinx while maintaining
- # backwards compatibility when passed along further down!
- # type: (list, unicode, tuple) -> nodes.field # noqa: F821
- def handle_item(fieldarg, content):
- par = nodes.paragraph()
- par += addnodes.literal_strong("", fieldarg) # Patch: this line added
- # par.extend(self.make_xrefs(self.rolename, domain, fieldarg,
- # addnodes.literal_strong))
- if fieldarg in types:
- par += nodes.Text(" (")
- # NOTE: using .pop() here to prevent a single type node to be
- # inserted twice into the doctree, which leads to
- # inconsistencies later when references are resolved
- fieldtype = types.pop(fieldarg)
- if len(fieldtype) == 1 and isinstance(fieldtype[0], nodes.Text):
- typename = "".join(n.astext() for n in fieldtype)
- typename = typename.replace("int", "python:int")
- typename = typename.replace("long", "python:long")
- typename = typename.replace("float", "python:float")
- typename = typename.replace("type", "python:type")
- par.extend(self.make_xrefs(self.typerolename, domain, typename, addnodes.literal_emphasis, **kw))
- else:
- par += fieldtype
- par += nodes.Text(")")
- par += nodes.Text(" -- ")
- par += content
- return par
- fieldname = nodes.field_name("", self.label)
- if len(items) == 1 and self.can_collapse:
- fieldarg, content = items[0]
- bodynode = handle_item(fieldarg, content)
- else:
- bodynode = self.list_type()
- for fieldarg, content in items:
- bodynode += nodes.list_item("", handle_item(fieldarg, content))
- fieldbody = nodes.field_body("", bodynode)
- return nodes.field("", fieldname, fieldbody)
- TypedField.make_field = patched_make_field
- def inject_minigalleries(app, what, name, obj, options, lines):
- """Inject a minigallery into a docstring.
- This avoids having to manually write the .. minigallery directive for every item we want a minigallery for,
- as it would be easy to miss some.
- This callback is called after the .. auto directives (like ..autoclass) have been processed,
- and modifies the lines parameter inplace to add the .. minigallery that will show which examples
- are using which object.
- It's a bit hacky, but not *that* hacky when you consider that the recommended way is to do pretty much the same,
- but instead with templates using autosummary (which we don't want to use):
- (https://sphinx-gallery.github.io/stable/configuration.html#auto-documenting-your-api-with-links-to-examples)
- For docs on autodoc-process-docstring, see the autodoc docs:
- https://www.sphinx-doc.org/en/master/usage/extensions/autodoc.html
- """
- if what in ("class", "function"):
- lines.append(f".. minigallery:: {name}")
- lines.append(f" :add-heading: Examples using ``{name.split('.')[-1]}``:")
- # avoid heading entirely to avoid warning. As a bonud it actually renders better
- lines.append(" :heading-level: 9")
- lines.append("\n")
- def inject_weight_metadata(app, what, name, obj, options, lines):
- """This hook is used to generate docs for the models weights.
- Objects like ResNet18_Weights are enums with fields, where each field is a Weight object.
- Enums aren't easily documented in Python so the solution we're going for is to:
- - add an autoclass directive in the model's builder docstring, e.g.
- ```
- .. autoclass:: torchvision.models.ResNet34_Weights
- :members:
- ```
- (see resnet.py for an example)
- - then this hook is called automatically when building the docs, and it generates the text that gets
- used within the autoclass directive.
- """
- if getattr(obj, ".__name__", "").endswith(("_Weights", "_QuantizedWeights")):
- if len(obj) == 0:
- lines[:] = ["There are no available pre-trained weights."]
- return
- lines[:] = [
- "The model builder above accepts the following values as the ``weights`` parameter.",
- f"``{obj.__name__}.DEFAULT`` is equivalent to ``{obj.DEFAULT}``. You can also use strings, e.g. "
- f"``weights='DEFAULT'`` or ``weights='{str(list(obj)[0]).split('.')[1]}'``.",
- ]
- if obj.__doc__ != "An enumeration.":
- # We only show the custom enum doc if it was overridden. The default one from Python is "An enumeration"
- lines.append("")
- lines.append(obj.__doc__)
- lines.append("")
- for field in obj:
- meta = copy(field.meta)
- lines += [f"**{str(field)}**:", ""]
- lines += [meta.pop("_docs")]
- if field == obj.DEFAULT:
- lines += [f"Also available as ``{obj.__name__}.DEFAULT``."]
- lines += [""]
- table = []
- metrics = meta.pop("_metrics")
- for dataset, dataset_metrics in metrics.items():
- for metric_name, metric_value in dataset_metrics.items():
- table.append((f"{metric_name} (on {dataset})", str(metric_value)))
- for k, v in meta.items():
- if k in {"recipe", "license"}:
- v = f"`link <{v}>`__"
- elif k == "min_size":
- v = f"height={v[0]}, width={v[1]}"
- elif k in {"categories", "keypoint_names"} and isinstance(v, list):
- max_visible = 3
- v_sample = ", ".join(v[:max_visible])
- v = f"{v_sample}, ... ({len(v)-max_visible} omitted)" if len(v) > max_visible else v_sample
- elif k == "_ops":
- v = f"{v:.2f}"
- k = "GIPS" if obj.__name__.endswith("_QuantizedWeights") else "GFLOPS"
- elif k == "_file_size":
- k = "File size"
- v = f"{v:.1f} MB"
- table.append((str(k), str(v)))
- table = tabulate(table, tablefmt="rst")
- lines += [".. rst-class:: table-weights"] # Custom CSS class, see custom_torchvision.css
- lines += [".. table::", ""]
- lines += textwrap.indent(table, " " * 4).split("\n")
- lines.append("")
- lines.append(
- f"The inference transforms are available at ``{str(field)}.transforms`` and "
- f"perform the following preprocessing operations: {field.transforms().describe()}"
- )
- lines.append("")
- def generate_weights_table(module, table_name, metrics, dataset, include_patterns=None, exclude_patterns=None):
- weights_endswith = "_QuantizedWeights" if module.__name__.split(".")[-1] == "quantization" else "_Weights"
- weight_enums = [getattr(module, name) for name in dir(module) if name.endswith(weights_endswith)]
- weights = [w for weight_enum in weight_enums for w in weight_enum]
- if include_patterns is not None:
- weights = [w for w in weights if any(p in str(w) for p in include_patterns)]
- if exclude_patterns is not None:
- weights = [w for w in weights if all(p not in str(w) for p in exclude_patterns)]
- ops_name = "GIPS" if "QuantizedWeights" in weights_endswith else "GFLOPS"
- metrics_keys, metrics_names = zip(*metrics)
- column_names = ["Weight"] + list(metrics_names) + ["Params"] + [ops_name, "Recipe"] # Final column order
- column_names = [f"**{name}**" for name in column_names] # Add bold
- content = []
- for w in weights:
- row = [
- f":class:`{w} <{type(w).__name__}>`",
- *(w.meta["_metrics"][dataset][metric] for metric in metrics_keys),
- f"{w.meta['num_params']/1e6:.1f}M",
- f"{w.meta['_ops']:.2f}",
- f"`link <{w.meta['recipe']}>`__",
- ]
- content.append(row)
- column_widths = ["110"] + ["18"] * len(metrics_names) + ["18"] * 2 + ["10"]
- widths_table = " ".join(column_widths)
- table = tabulate(content, headers=column_names, tablefmt="rst")
- generated_dir = Path("generated")
- generated_dir.mkdir(exist_ok=True)
- with open(generated_dir / f"{table_name}_table.rst", "w+") as table_file:
- table_file.write(".. rst-class:: table-weights\n") # Custom CSS class, see custom_torchvision.css
- table_file.write(".. table::\n")
- table_file.write(f" :widths: {widths_table} \n\n")
- table_file.write(f"{textwrap.indent(table, ' ' * 4)}\n\n")
- generate_weights_table(
- module=M, table_name="classification", metrics=[("acc@1", "Acc@1"), ("acc@5", "Acc@5")], dataset="ImageNet-1K"
- )
- generate_weights_table(
- module=M.quantization,
- table_name="classification_quant",
- metrics=[("acc@1", "Acc@1"), ("acc@5", "Acc@5")],
- dataset="ImageNet-1K",
- )
- generate_weights_table(
- module=M.detection,
- table_name="detection",
- metrics=[("box_map", "Box MAP")],
- exclude_patterns=["Mask", "Keypoint"],
- dataset="COCO-val2017",
- )
- generate_weights_table(
- module=M.detection,
- table_name="instance_segmentation",
- metrics=[("box_map", "Box MAP"), ("mask_map", "Mask MAP")],
- dataset="COCO-val2017",
- include_patterns=["Mask"],
- )
- generate_weights_table(
- module=M.detection,
- table_name="detection_keypoint",
- metrics=[("box_map", "Box MAP"), ("kp_map", "Keypoint MAP")],
- dataset="COCO-val2017",
- include_patterns=["Keypoint"],
- )
- generate_weights_table(
- module=M.segmentation,
- table_name="segmentation",
- metrics=[("miou", "Mean IoU"), ("pixel_acc", "pixelwise Acc")],
- dataset="COCO-val2017-VOC-labels",
- )
- generate_weights_table(
- module=M.video, table_name="video", metrics=[("acc@1", "Acc@1"), ("acc@5", "Acc@5")], dataset="Kinetics-400"
- )
- def setup(app):
- app.connect("autodoc-process-docstring", inject_minigalleries)
- app.connect("autodoc-process-docstring", inject_weight_metadata)
|