123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121 |
- # Ultralytics YOLO 🚀, AGPL-3.0 license
- from ultralytics.cfg import TASK2DATA, TASK2METRIC
- from ultralytics.utils import DEFAULT_CFG_DICT, LOGGER, NUM_THREADS
- def run_ray_tune(model,
- space: dict = None,
- grace_period: int = 10,
- gpu_per_trial: int = None,
- max_samples: int = 10,
- **train_args):
- """
- Runs hyperparameter tuning using Ray Tune.
- Args:
- model (YOLO): Model to run the tuner on.
- space (dict, optional): The hyperparameter search space. Defaults to None.
- grace_period (int, optional): The grace period in epochs of the ASHA scheduler. Defaults to 10.
- gpu_per_trial (int, optional): The number of GPUs to allocate per trial. Defaults to None.
- max_samples (int, optional): The maximum number of trials to run. Defaults to 10.
- train_args (dict, optional): Additional arguments to pass to the `train()` method. Defaults to {}.
- Returns:
- (dict): A dictionary containing the results of the hyperparameter search.
- Raises:
- ModuleNotFoundError: If Ray Tune is not installed.
- """
- if train_args is None:
- train_args = {}
- try:
- from ray import tune
- from ray.air import RunConfig
- from ray.air.integrations.wandb import WandbLoggerCallback
- from ray.tune.schedulers import ASHAScheduler
- except ImportError:
- raise ModuleNotFoundError('Tuning hyperparameters requires Ray Tune. Install with: pip install "ray[tune]"')
- try:
- import wandb
- assert hasattr(wandb, '__version__')
- except (ImportError, AssertionError):
- wandb = False
- default_space = {
- # 'optimizer': tune.choice(['SGD', 'Adam', 'AdamW', 'NAdam', 'RAdam', 'RMSProp']),
- 'lr0': tune.uniform(1e-5, 1e-1),
- 'lrf': tune.uniform(0.01, 1.0), # final OneCycleLR learning rate (lr0 * lrf)
- 'momentum': tune.uniform(0.6, 0.98), # SGD momentum/Adam beta1
- 'weight_decay': tune.uniform(0.0, 0.001), # optimizer weight decay 5e-4
- 'warmup_epochs': tune.uniform(0.0, 5.0), # warmup epochs (fractions ok)
- 'warmup_momentum': tune.uniform(0.0, 0.95), # warmup initial momentum
- 'box': tune.uniform(0.02, 0.2), # box loss gain
- 'cls': tune.uniform(0.2, 4.0), # cls loss gain (scale with pixels)
- 'hsv_h': tune.uniform(0.0, 0.1), # image HSV-Hue augmentation (fraction)
- 'hsv_s': tune.uniform(0.0, 0.9), # image HSV-Saturation augmentation (fraction)
- 'hsv_v': tune.uniform(0.0, 0.9), # image HSV-Value augmentation (fraction)
- 'degrees': tune.uniform(0.0, 45.0), # image rotation (+/- deg)
- 'translate': tune.uniform(0.0, 0.9), # image translation (+/- fraction)
- 'scale': tune.uniform(0.0, 0.9), # image scale (+/- gain)
- 'shear': tune.uniform(0.0, 10.0), # image shear (+/- deg)
- 'perspective': tune.uniform(0.0, 0.001), # image perspective (+/- fraction), range 0-0.001
- 'flipud': tune.uniform(0.0, 1.0), # image flip up-down (probability)
- 'fliplr': tune.uniform(0.0, 1.0), # image flip left-right (probability)
- 'mosaic': tune.uniform(0.0, 1.0), # image mixup (probability)
- 'mixup': tune.uniform(0.0, 1.0), # image mixup (probability)
- 'copy_paste': tune.uniform(0.0, 1.0)} # segment copy-paste (probability)
- def _tune(config):
- """
- Trains the YOLO model with the specified hyperparameters and additional arguments.
- Args:
- config (dict): A dictionary of hyperparameters to use for training.
- Returns:
- None.
- """
- model._reset_callbacks()
- config.update(train_args)
- model.train(**config)
- # Get search space
- if not space:
- space = default_space
- LOGGER.warning('WARNING ⚠️ search space not provided, using default search space.')
- # Get dataset
- data = train_args.get('data', TASK2DATA[model.task])
- space['data'] = data
- if 'data' not in train_args:
- LOGGER.warning(f'WARNING ⚠️ data not provided, using default "data={data}".')
- # Define the trainable function with allocated resources
- trainable_with_resources = tune.with_resources(_tune, {'cpu': NUM_THREADS, 'gpu': gpu_per_trial or 0})
- # Define the ASHA scheduler for hyperparameter search
- asha_scheduler = ASHAScheduler(time_attr='epoch',
- metric=TASK2METRIC[model.task],
- mode='max',
- max_t=train_args.get('epochs') or DEFAULT_CFG_DICT['epochs'] or 100,
- grace_period=grace_period,
- reduction_factor=3)
- # Define the callbacks for the hyperparameter search
- tuner_callbacks = [WandbLoggerCallback(project='YOLOv8-tune')] if wandb else []
- # Create the Ray Tune hyperparameter search tuner
- tuner = tune.Tuner(trainable_with_resources,
- param_space=space,
- tune_config=tune.TuneConfig(scheduler=asha_scheduler, num_samples=max_samples),
- run_config=RunConfig(callbacks=tuner_callbacks, storage_path='./runs/tune'))
- # Run the hyperparameter search
- tuner.fit()
- # Return the results of the hyperparameter search
- return tuner.get_results()
|