123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526 |
- # Ultralytics YOLO 🚀, AGPL-3.0 license
- import math
- import os
- import platform
- import random
- import time
- from contextlib import contextmanager
- from copy import deepcopy
- from pathlib import Path
- from typing import Union
- import numpy as np
- import torch
- import torch.distributed as dist
- import torch.nn as nn
- import torch.nn.functional as F
- from ultralytics.utils import DEFAULT_CFG_DICT, DEFAULT_CFG_KEYS, LOGGER, RANK, __version__
- from ultralytics.utils.checks import check_version
- try:
- import thop
- except ImportError:
- thop = None
- TORCH_1_9 = check_version(torch.__version__, '1.9.0')
- TORCH_2_0 = check_version(torch.__version__, '2.0.0')
- @contextmanager
- def torch_distributed_zero_first(local_rank: int):
- """Decorator to make all processes in distributed training wait for each local_master to do something."""
- initialized = torch.distributed.is_available() and torch.distributed.is_initialized()
- if initialized and local_rank not in (-1, 0):
- dist.barrier(device_ids=[local_rank])
- yield
- if initialized and local_rank == 0:
- dist.barrier(device_ids=[0])
- def smart_inference_mode():
- """Applies torch.inference_mode() decorator if torch>=1.9.0 else torch.no_grad() decorator."""
- def decorate(fn):
- """Applies appropriate torch decorator for inference mode based on torch version."""
- return (torch.inference_mode if TORCH_1_9 else torch.no_grad)()(fn)
- return decorate
- def get_cpu_info():
- """Return a string with system CPU information, i.e. 'Apple M2'."""
- import cpuinfo # pip install py-cpuinfo
- k = 'brand_raw', 'hardware_raw', 'arch_string_raw' # info keys sorted by preference (not all keys always available)
- info = cpuinfo.get_cpu_info() # info dict
- string = info.get(k[0] if k[0] in info else k[1] if k[1] in info else k[2], 'unknown')
- return string.replace('(R)', '').replace('CPU ', '').replace('@ ', '')
- def select_device(device='', batch=0, newline=False, verbose=True):
- """Selects PyTorch Device. Options are device = None or 'cpu' or 0 or '0' or '0,1,2,3'."""
- s = f'Ultralytics YOLOv{__version__} 🚀 Python-{platform.python_version()} torch-{torch.__version__} '
- device = str(device).lower()
- for remove in 'cuda:', 'none', '(', ')', '[', ']', "'", ' ':
- device = device.replace(remove, '') # to string, 'cuda:0' -> '0' and '(0, 1)' -> '0,1'
- cpu = device == 'cpu'
- mps = device == 'mps' # Apple Metal Performance Shaders (MPS)
- if cpu or mps:
- os.environ['CUDA_VISIBLE_DEVICES'] = '-1' # force torch.cuda.is_available() = False
- elif device: # non-cpu device requested
- if device == 'cuda':
- device = '0'
- visible = os.environ.get('CUDA_VISIBLE_DEVICES', None)
- os.environ['CUDA_VISIBLE_DEVICES'] = device # set environment variable - must be before assert is_available()
- if not (torch.cuda.is_available() and torch.cuda.device_count() >= len(device.replace(',', ''))):
- LOGGER.info(s)
- install = 'See https://pytorch.org/get-started/locally/ for up-to-date torch install instructions if no ' \
- 'CUDA devices are seen by torch.\n' if torch.cuda.device_count() == 0 else ''
- raise ValueError(f"Invalid CUDA 'device={device}' requested."
- f" Use 'device=cpu' or pass valid CUDA device(s) if available,"
- f" i.e. 'device=0' or 'device=0,1,2,3' for Multi-GPU.\n"
- f'\ntorch.cuda.is_available(): {torch.cuda.is_available()}'
- f'\ntorch.cuda.device_count(): {torch.cuda.device_count()}'
- f"\nos.environ['CUDA_VISIBLE_DEVICES']: {visible}\n"
- f'{install}')
- if not cpu and not mps and torch.cuda.is_available(): # prefer GPU if available
- devices = device.split(',') if device else '0' # range(torch.cuda.device_count()) # i.e. 0,1,6,7
- n = len(devices) # device count
- if n > 1 and batch > 0 and batch % n != 0: # check batch_size is divisible by device_count
- raise ValueError(f"'batch={batch}' must be a multiple of GPU count {n}. Try 'batch={batch // n * n}' or "
- f"'batch={batch // n * n + n}', the nearest batch sizes evenly divisible by {n}.")
- space = ' ' * (len(s) + 1)
- for i, d in enumerate(devices):
- p = torch.cuda.get_device_properties(i)
- s += f"{'' if i == 0 else space}CUDA:{d} ({p.name}, {p.total_memory / (1 << 20):.0f}MiB)\n" # bytes to MB
- arg = 'cuda:0'
- elif mps and getattr(torch, 'has_mps', False) and torch.backends.mps.is_available() and TORCH_2_0:
- # Prefer MPS if available
- s += f'MPS ({get_cpu_info()})\n'
- arg = 'mps'
- else: # revert to CPU
- s += f'CPU ({get_cpu_info()})\n'
- arg = 'cpu'
- if verbose and RANK == -1:
- LOGGER.info(s if newline else s.rstrip())
- return torch.device(arg)
- def time_sync():
- """PyTorch-accurate time."""
- if torch.cuda.is_available():
- torch.cuda.synchronize()
- return time.time()
- def fuse_conv_and_bn(conv, bn):
- """Fuse Conv2d() and BatchNorm2d() layers https://tehnokv.com/posts/fusing-batchnorm-and-conv/."""
- fusedconv = nn.Conv2d(conv.in_channels,
- conv.out_channels,
- kernel_size=conv.kernel_size,
- stride=conv.stride,
- padding=conv.padding,
- dilation=conv.dilation,
- groups=conv.groups,
- bias=True).requires_grad_(False).to(conv.weight.device)
- # Prepare filters
- w_conv = conv.weight.clone().view(conv.out_channels, -1)
- w_bn = torch.diag(bn.weight.div(torch.sqrt(bn.eps + bn.running_var)))
- fusedconv.weight.copy_(torch.mm(w_bn, w_conv).view(fusedconv.weight.shape))
- # Prepare spatial bias
- b_conv = torch.zeros(conv.weight.size(0), device=conv.weight.device) if conv.bias is None else conv.bias
- b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps))
- fusedconv.bias.copy_(torch.mm(w_bn, b_conv.reshape(-1, 1)).reshape(-1) + b_bn)
- return fusedconv
- def fuse_deconv_and_bn(deconv, bn):
- """Fuse ConvTranspose2d() and BatchNorm2d() layers."""
- fuseddconv = nn.ConvTranspose2d(deconv.in_channels,
- deconv.out_channels,
- kernel_size=deconv.kernel_size,
- stride=deconv.stride,
- padding=deconv.padding,
- output_padding=deconv.output_padding,
- dilation=deconv.dilation,
- groups=deconv.groups,
- bias=True).requires_grad_(False).to(deconv.weight.device)
- # Prepare filters
- w_deconv = deconv.weight.clone().view(deconv.out_channels, -1)
- w_bn = torch.diag(bn.weight.div(torch.sqrt(bn.eps + bn.running_var)))
- fuseddconv.weight.copy_(torch.mm(w_bn, w_deconv).view(fuseddconv.weight.shape))
- # Prepare spatial bias
- b_conv = torch.zeros(deconv.weight.size(1), device=deconv.weight.device) if deconv.bias is None else deconv.bias
- b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps))
- fuseddconv.bias.copy_(torch.mm(w_bn, b_conv.reshape(-1, 1)).reshape(-1) + b_bn)
- return fuseddconv
- def model_info(model, detailed=False, verbose=True, imgsz=640):
- """Model information. imgsz may be int or list, i.e. imgsz=640 or imgsz=[640, 320]."""
- if not verbose:
- return
- n_p = get_num_params(model) # number of parameters
- n_g = get_num_gradients(model) # number of gradients
- n_l = len(list(model.modules())) # number of layers
- if detailed:
- LOGGER.info(
- f"{'layer':>5} {'name':>40} {'gradient':>9} {'parameters':>12} {'shape':>20} {'mu':>10} {'sigma':>10}")
- for i, (name, p) in enumerate(model.named_parameters()):
- name = name.replace('module_list.', '')
- LOGGER.info('%5g %40s %9s %12g %20s %10.3g %10.3g %10s' %
- (i, name, p.requires_grad, p.numel(), list(p.shape), p.mean(), p.std(), p.dtype))
- flops = get_flops(model, imgsz)
- fused = ' (fused)' if getattr(model, 'is_fused', lambda: False)() else ''
- fs = f', {flops:.1f} GFLOPs' if flops else ''
- yaml_file = getattr(model, 'yaml_file', '') or getattr(model, 'yaml', {}).get('yaml_file', '')
- model_name = Path(yaml_file).stem.replace('yolo', 'YOLO') or 'Model'
- LOGGER.info(f'{model_name} summary{fused}: {n_l} layers, {n_p} parameters, {n_g} gradients{fs}')
- return n_l, n_p, n_g, flops
- def get_num_params(model):
- """Return the total number of parameters in a YOLO model."""
- return sum(x.numel() for x in model.parameters())
- def get_num_gradients(model):
- """Return the total number of parameters with gradients in a YOLO model."""
- return sum(x.numel() for x in model.parameters() if x.requires_grad)
- def model_info_for_loggers(trainer):
- """
- Return model info dict with useful model information.
- Example for YOLOv8n:
- {'model/parameters': 3151904,
- 'model/GFLOPs': 8.746,
- 'model/speed_ONNX(ms)': 41.244,
- 'model/speed_TensorRT(ms)': 3.211,
- 'model/speed_PyTorch(ms)': 18.755}
- """
- if trainer.args.profile: # profile ONNX and TensorRT times
- from ultralytics.utils.benchmarks import ProfileModels
- results = ProfileModels([trainer.last], device=trainer.device).profile()[0]
- results.pop('model/name')
- else: # only return PyTorch times from most recent validation
- results = {
- 'model/parameters': get_num_params(trainer.model),
- 'model/GFLOPs': round(get_flops(trainer.model), 3)}
- results['model/speed_PyTorch(ms)'] = round(trainer.validator.speed['inference'], 3)
- return results
- def get_flops(model, imgsz=640):
- """Return a YOLO model's FLOPs."""
- try:
- model = de_parallel(model)
- p = next(model.parameters())
- stride = max(int(model.stride.max()), 32) if hasattr(model, 'stride') else 32 # max stride
- im = torch.empty((1, p.shape[1], stride, stride), device=p.device) # input image in BCHW format
- flops = thop.profile(deepcopy(model), inputs=[im], verbose=False)[0] / 1E9 * 2 if thop else 0 # stride GFLOPs
- imgsz = imgsz if isinstance(imgsz, list) else [imgsz, imgsz] # expand if int/float
- return flops * imgsz[0] / stride * imgsz[1] / stride # 640x640 GFLOPs
- except Exception:
- return 0
- def get_flops_with_torch_profiler(model, imgsz=640):
- """Compute model FLOPs (thop alternative)."""
- if TORCH_2_0:
- model = de_parallel(model)
- p = next(model.parameters())
- stride = (max(int(model.stride.max()), 32) if hasattr(model, 'stride') else 32) * 2 # max stride
- im = torch.zeros((1, p.shape[1], stride, stride), device=p.device) # input image in BCHW format
- with torch.profiler.profile(with_flops=True) as prof:
- model(im)
- flops = sum(x.flops for x in prof.key_averages()) / 1E9
- imgsz = imgsz if isinstance(imgsz, list) else [imgsz, imgsz] # expand if int/float
- flops = flops * imgsz[0] / stride * imgsz[1] / stride # 640x640 GFLOPs
- return flops
- return 0
- def initialize_weights(model):
- """Initialize model weights to random values."""
- for m in model.modules():
- t = type(m)
- if t is nn.Conv2d:
- pass # nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
- elif t is nn.BatchNorm2d:
- m.eps = 1e-3
- m.momentum = 0.03
- elif t in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU]:
- m.inplace = True
- def scale_img(img, ratio=1.0, same_shape=False, gs=32): # img(16,3,256,416)
- # Scales img(bs,3,y,x) by ratio constrained to gs-multiple
- if ratio == 1.0:
- return img
- h, w = img.shape[2:]
- s = (int(h * ratio), int(w * ratio)) # new size
- img = F.interpolate(img, size=s, mode='bilinear', align_corners=False) # resize
- if not same_shape: # pad/crop img
- h, w = (math.ceil(x * ratio / gs) * gs for x in (h, w))
- return F.pad(img, [0, w - s[1], 0, h - s[0]], value=0.447) # value = imagenet mean
- def make_divisible(x, divisor):
- """Returns nearest x divisible by divisor."""
- if isinstance(divisor, torch.Tensor):
- divisor = int(divisor.max()) # to int
- return math.ceil(x / divisor) * divisor
- def copy_attr(a, b, include=(), exclude=()):
- """Copies attributes from object 'b' to object 'a', with options to include/exclude certain attributes."""
- for k, v in b.__dict__.items():
- if (len(include) and k not in include) or k.startswith('_') or k in exclude:
- continue
- else:
- setattr(a, k, v)
- def get_latest_opset():
- """Return second-most (for maturity) recently supported ONNX opset by this version of torch."""
- return max(int(k[14:]) for k in vars(torch.onnx) if 'symbolic_opset' in k) - 1 # opset
- def intersect_dicts(da, db, exclude=()):
- """Returns a dictionary of intersecting keys with matching shapes, excluding 'exclude' keys, using da values."""
- return {k: v for k, v in da.items() if k in db and all(x not in k for x in exclude) and v.shape == db[k].shape}
- def is_parallel(model):
- """Returns True if model is of type DP or DDP."""
- return isinstance(model, (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel))
- def de_parallel(model):
- """De-parallelize a model: returns single-GPU model if model is of type DP or DDP."""
- return model.module if is_parallel(model) else model
- def one_cycle(y1=0.0, y2=1.0, steps=100):
- """Returns a lambda function for sinusoidal ramp from y1 to y2 https://arxiv.org/pdf/1812.01187.pdf."""
- return lambda x: ((1 - math.cos(x * math.pi / steps)) / 2) * (y2 - y1) + y1
- def init_seeds(seed=0, deterministic=False):
- """Initialize random number generator (RNG) seeds https://pytorch.org/docs/stable/notes/randomness.html."""
- random.seed(seed)
- np.random.seed(seed)
- torch.manual_seed(seed)
- torch.cuda.manual_seed(seed)
- torch.cuda.manual_seed_all(seed) # for Multi-GPU, exception safe
- # torch.backends.cudnn.benchmark = True # AutoBatch problem https://github.com/ultralytics/yolov5/issues/9287
- if deterministic:
- if TORCH_2_0:
- torch.use_deterministic_algorithms(True, warn_only=True) # warn if deterministic is not possible
- torch.backends.cudnn.deterministic = True
- os.environ['CUBLAS_WORKSPACE_CONFIG'] = ':4096:8'
- os.environ['PYTHONHASHSEED'] = str(seed)
- else:
- LOGGER.warning('WARNING ⚠️ Upgrade to torch>=2.0.0 for deterministic training.')
- else:
- torch.use_deterministic_algorithms(False)
- torch.backends.cudnn.deterministic = False
- class ModelEMA:
- """Updated Exponential Moving Average (EMA) from https://github.com/rwightman/pytorch-image-models
- Keeps a moving average of everything in the model state_dict (parameters and buffers)
- For EMA details see https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage
- To disable EMA set the `enabled` attribute to `False`.
- """
- def __init__(self, model, decay=0.9999, tau=2000, updates=0):
- """Create EMA."""
- self.ema = deepcopy(de_parallel(model)).eval() # FP32 EMA
- self.updates = updates # number of EMA updates
- self.decay = lambda x: decay * (1 - math.exp(-x / tau)) # decay exponential ramp (to help early epochs)
- for p in self.ema.parameters():
- p.requires_grad_(False)
- self.enabled = True
- def update(self, model):
- """Update EMA parameters."""
- if self.enabled:
- self.updates += 1
- d = self.decay(self.updates)
- msd = de_parallel(model).state_dict() # model state_dict
- for k, v in self.ema.state_dict().items():
- if v.dtype.is_floating_point: # true for FP16 and FP32
- v *= d
- v += (1 - d) * msd[k].detach()
- # assert v.dtype == msd[k].dtype == torch.float32, f'{k}: EMA {v.dtype}, model {msd[k].dtype}'
- def update_attr(self, model, include=(), exclude=('process_group', 'reducer')):
- """Updates attributes and saves stripped model with optimizer removed."""
- if self.enabled:
- copy_attr(self.ema, model, include, exclude)
- def strip_optimizer(f: Union[str, Path] = 'best.pt', s: str = '') -> None:
- """
- Strip optimizer from 'f' to finalize training, optionally save as 's'.
- Args:
- f (str): file path to model to strip the optimizer from. Default is 'best.pt'.
- s (str): file path to save the model with stripped optimizer to. If not provided, 'f' will be overwritten.
- Returns:
- None
- Example:
- ```python
- from pathlib import Path
- from ultralytics.utils.torch_utils import strip_optimizer
- for f in Path('path/to/weights').rglob('*.pt'):
- strip_optimizer(f)
- ```
- """
- # Use dill (if exists) to serialize the lambda functions where pickle does not do this
- try:
- import dill as pickle
- except ImportError:
- import pickle
- x = torch.load(f, map_location=torch.device('cpu'))
- if 'model' not in x:
- LOGGER.info(f'Skipping {f}, not a valid Ultralytics model.')
- return
- if hasattr(x['model'], 'args'):
- x['model'].args = dict(x['model'].args) # convert from IterableSimpleNamespace to dict
- args = {**DEFAULT_CFG_DICT, **x['train_args']} if 'train_args' in x else None # combine args
- if x.get('ema'):
- x['model'] = x['ema'] # replace model with ema
- for k in 'optimizer', 'best_fitness', 'ema', 'updates': # keys
- x[k] = None
- x['epoch'] = -1
- x['model'].half() # to FP16
- for p in x['model'].parameters():
- p.requires_grad = False
- x['train_args'] = {k: v for k, v in args.items() if k in DEFAULT_CFG_KEYS} # strip non-default keys
- # x['model'].args = x['train_args']
- torch.save(x, s or f, pickle_module=pickle)
- mb = os.path.getsize(s or f) / 1E6 # filesize
- LOGGER.info(f"Optimizer stripped from {f},{f' saved as {s},' if s else ''} {mb:.1f}MB")
- def profile(input, ops, n=10, device=None):
- """
- Ultralytics speed, memory and FLOPs profiler.
- Example:
- ```python
- from ultralytics.utils.torch_utils import profile
- input = torch.randn(16, 3, 640, 640)
- m1 = lambda x: x * torch.sigmoid(x)
- m2 = nn.SiLU()
- profile(input, [m1, m2], n=100) # profile over 100 iterations
- ```
- """
- results = []
- if not isinstance(device, torch.device):
- device = select_device(device)
- LOGGER.info(f"{'Params':>12s}{'GFLOPs':>12s}{'GPU_mem (GB)':>14s}{'forward (ms)':>14s}{'backward (ms)':>14s}"
- f"{'input':>24s}{'output':>24s}")
- for x in input if isinstance(input, list) else [input]:
- x = x.to(device)
- x.requires_grad = True
- for m in ops if isinstance(ops, list) else [ops]:
- m = m.to(device) if hasattr(m, 'to') else m # device
- m = m.half() if hasattr(m, 'half') and isinstance(x, torch.Tensor) and x.dtype is torch.float16 else m
- tf, tb, t = 0, 0, [0, 0, 0] # dt forward, backward
- try:
- flops = thop.profile(m, inputs=[x], verbose=False)[0] / 1E9 * 2 if thop else 0 # GFLOPs
- except Exception:
- flops = 0
- try:
- for _ in range(n):
- t[0] = time_sync()
- y = m(x)
- t[1] = time_sync()
- try:
- (sum(yi.sum() for yi in y) if isinstance(y, list) else y).sum().backward()
- t[2] = time_sync()
- except Exception: # no backward method
- # print(e) # for debug
- t[2] = float('nan')
- tf += (t[1] - t[0]) * 1000 / n # ms per op forward
- tb += (t[2] - t[1]) * 1000 / n # ms per op backward
- mem = torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0 # (GB)
- s_in, s_out = (tuple(x.shape) if isinstance(x, torch.Tensor) else 'list' for x in (x, y)) # shapes
- p = sum(x.numel() for x in m.parameters()) if isinstance(m, nn.Module) else 0 # parameters
- LOGGER.info(f'{p:12}{flops:12.4g}{mem:>14.3f}{tf:14.4g}{tb:14.4g}{str(s_in):>24s}{str(s_out):>24s}')
- results.append([p, flops, mem, tf, tb, s_in, s_out])
- except Exception as e:
- LOGGER.info(e)
- results.append(None)
- torch.cuda.empty_cache()
- return results
- class EarlyStopping:
- """
- Early stopping class that stops training when a specified number of epochs have passed without improvement.
- """
- def __init__(self, patience=50):
- """
- Initialize early stopping object
- Args:
- patience (int, optional): Number of epochs to wait after fitness stops improving before stopping.
- """
- self.best_fitness = 0.0 # i.e. mAP
- self.best_epoch = 0
- self.patience = patience or float('inf') # epochs to wait after fitness stops improving to stop
- self.possible_stop = False # possible stop may occur next epoch
- def __call__(self, epoch, fitness):
- """
- Check whether to stop training
- Args:
- epoch (int): Current epoch of training
- fitness (float): Fitness value of current epoch
- Returns:
- (bool): True if training should stop, False otherwise
- """
- if fitness is None: # check if fitness=None (happens when val=False)
- return False
- if fitness >= self.best_fitness: # >= 0 to allow for early zero-fitness stage of training
- self.best_epoch = epoch
- self.best_fitness = fitness
- delta = epoch - self.best_epoch # epochs without improvement
- self.possible_stop = delta >= (self.patience - 1) # possible stop may occur next epoch
- stop = delta >= self.patience # stop training if patience exceeded
- if stop:
- LOGGER.info(f'Stopping training early as no improvement observed in last {self.patience} epochs. '
- f'Best results observed at epoch {self.best_epoch}, best model saved as best.pt.\n'
- f'To update EarlyStopping(patience={self.patience}) pass a new patience value, '
- f'i.e. `patience=300` or use `patience=0` to disable EarlyStopping.')
- return stop
|