123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592 |
- # Ultralytics YOLO 🚀, AGPL-3.0 license
- import contextlib
- import math
- import warnings
- from pathlib import Path
- import cv2
- import matplotlib.pyplot as plt
- import numpy as np
- import torch
- from PIL import Image, ImageDraw, ImageFont
- from PIL import __version__ as pil_version
- from ultralytics.utils import LOGGER, TryExcept, plt_settings, threaded
- from .checks import check_font, check_version, is_ascii
- from .files import increment_path
- from .ops import clip_boxes, scale_image, xywh2xyxy, xyxy2xywh
- class Colors:
- """
- Ultralytics default color palette https://ultralytics.com/.
- This class provides methods to work with the Ultralytics color palette, including converting hex color codes to
- RGB values.
- Attributes:
- palette (list of tuple): List of RGB color values.
- n (int): The number of colors in the palette.
- pose_palette (np.array): A specific color palette array with dtype np.uint8.
- """
- def __init__(self):
- """Initialize colors as hex = matplotlib.colors.TABLEAU_COLORS.values()."""
- hexs = ('FF3838', 'FF9D97', 'FF701F', 'FFB21D', 'CFD231', '48F90A', '92CC17', '3DDB86', '1A9334', '00D4BB',
- '2C99A8', '00C2FF', '344593', '6473FF', '0018EC', '8438FF', '520085', 'CB38FF', 'FF95C8', 'FF37C7')
- self.palette = [self.hex2rgb(f'#{c}') for c in hexs]
- self.n = len(self.palette)
- self.pose_palette = np.array([[255, 128, 0], [255, 153, 51], [255, 178, 102], [230, 230, 0], [255, 153, 255],
- [153, 204, 255], [255, 102, 255], [255, 51, 255], [102, 178, 255], [51, 153, 255],
- [255, 153, 153], [255, 102, 102], [255, 51, 51], [153, 255, 153], [102, 255, 102],
- [51, 255, 51], [0, 255, 0], [0, 0, 255], [255, 0, 0], [255, 255, 255]],
- dtype=np.uint8)
- def __call__(self, i, bgr=False):
- """Converts hex color codes to RGB values."""
- c = self.palette[int(i) % self.n]
- return (c[2], c[1], c[0]) if bgr else c
- @staticmethod
- def hex2rgb(h):
- """Converts hex color codes to RGB values (i.e. default PIL order)."""
- return tuple(int(h[1 + i:1 + i + 2], 16) for i in (0, 2, 4))
- colors = Colors() # create instance for 'from utils.plots import colors'
- class Annotator:
- """
- Ultralytics Annotator for train/val mosaics and JPGs and predictions annotations.
- Attributes:
- im (Image.Image or numpy array): The image to annotate.
- pil (bool): Whether to use PIL or cv2 for drawing annotations.
- font (ImageFont.truetype or ImageFont.load_default): Font used for text annotations.
- lw (float): Line width for drawing.
- skeleton (List[List[int]]): Skeleton structure for keypoints.
- limb_color (List[int]): Color palette for limbs.
- kpt_color (List[int]): Color palette for keypoints.
- """
- def __init__(self, im, line_width=None, font_size=None, font='Arial.ttf', pil=False, example='abc'):
- """Initialize the Annotator class with image and line width along with color palette for keypoints and limbs."""
- assert im.data.contiguous, 'Image not contiguous. Apply np.ascontiguousarray(im) to Annotator() input images.'
- non_ascii = not is_ascii(example) # non-latin labels, i.e. asian, arabic, cyrillic
- self.pil = pil or non_ascii
- if self.pil: # use PIL
- self.im = im if isinstance(im, Image.Image) else Image.fromarray(im)
- self.draw = ImageDraw.Draw(self.im)
- try:
- font = check_font('Arial.Unicode.ttf' if non_ascii else font)
- size = font_size or max(round(sum(self.im.size) / 2 * 0.035), 12)
- self.font = ImageFont.truetype(str(font), size)
- except Exception:
- self.font = ImageFont.load_default()
- # Deprecation fix for w, h = getsize(string) -> _, _, w, h = getbox(string)
- if check_version(pil_version, '9.2.0'):
- self.font.getsize = lambda x: self.font.getbbox(x)[2:4] # text width, height
- else: # use cv2
- self.im = im
- self.lw = line_width or max(round(sum(im.shape) / 2 * 0.003), 2) # line width
- # Pose
- self.skeleton = [[16, 14], [14, 12], [17, 15], [15, 13], [12, 13], [6, 12], [7, 13], [6, 7], [6, 8], [7, 9],
- [8, 10], [9, 11], [2, 3], [1, 2], [1, 3], [2, 4], [3, 5], [4, 6], [5, 7]]
- self.limb_color = colors.pose_palette[[9, 9, 9, 9, 7, 7, 7, 0, 0, 0, 0, 0, 16, 16, 16, 16, 16, 16, 16]]
- self.kpt_color = colors.pose_palette[[16, 16, 16, 16, 16, 0, 0, 0, 0, 0, 0, 9, 9, 9, 9, 9, 9]]
- def box_label(self, box, label='', color=(128, 128, 128), txt_color=(255, 255, 255)):
- """Add one xyxy box to image with label."""
- if isinstance(box, torch.Tensor):
- box = box.tolist()
- if self.pil or not is_ascii(label):
- self.draw.rectangle(box, width=self.lw, outline=color) # box
- if label:
- w, h = self.font.getsize(label) # text width, height
- outside = box[1] - h >= 0 # label fits outside box
- self.draw.rectangle(
- (box[0], box[1] - h if outside else box[1], box[0] + w + 1,
- box[1] + 1 if outside else box[1] + h + 1),
- fill=color,
- )
- # self.draw.text((box[0], box[1]), label, fill=txt_color, font=self.font, anchor='ls') # for PIL>8.0
- self.draw.text((box[0], box[1] - h if outside else box[1]), label, fill=txt_color, font=self.font)
- else: # cv2
- p1, p2 = (int(box[0]), int(box[1])), (int(box[2]), int(box[3]))
- cv2.rectangle(self.im, p1, p2, color, thickness=self.lw, lineType=cv2.LINE_AA)
- if label:
- tf = max(self.lw - 1, 1) # font thickness
- w, h = cv2.getTextSize(label, 0, fontScale=self.lw / 3, thickness=tf)[0] # text width, height
- outside = p1[1] - h >= 3
- p2 = p1[0] + w, p1[1] - h - 3 if outside else p1[1] + h + 3
- cv2.rectangle(self.im, p1, p2, color, -1, cv2.LINE_AA) # filled
- cv2.putText(self.im,
- label, (p1[0], p1[1] - 2 if outside else p1[1] + h + 2),
- 0,
- self.lw / 3,
- txt_color,
- thickness=tf,
- lineType=cv2.LINE_AA)
- def masks(self, masks, colors, im_gpu, alpha=0.5, retina_masks=False):
- """
- Plot masks on image.
- Args:
- masks (tensor): Predicted masks on cuda, shape: [n, h, w]
- colors (List[List[Int]]): Colors for predicted masks, [[r, g, b] * n]
- im_gpu (tensor): Image is in cuda, shape: [3, h, w], range: [0, 1]
- alpha (float): Mask transparency: 0.0 fully transparent, 1.0 opaque
- retina_masks (bool): Whether to use high resolution masks or not. Defaults to False.
- """
- if self.pil:
- # Convert to numpy first
- self.im = np.asarray(self.im).copy()
- if len(masks) == 0:
- self.im[:] = im_gpu.permute(1, 2, 0).contiguous().cpu().numpy() * 255
- if im_gpu.device != masks.device:
- im_gpu = im_gpu.to(masks.device)
- colors = torch.tensor(colors, device=masks.device, dtype=torch.float32) / 255.0 # shape(n,3)
- colors = colors[:, None, None] # shape(n,1,1,3)
- masks = masks.unsqueeze(3) # shape(n,h,w,1)
- masks_color = masks * (colors * alpha) # shape(n,h,w,3)
- inv_alph_masks = (1 - masks * alpha).cumprod(0) # shape(n,h,w,1)
- mcs = masks_color.max(dim=0).values # shape(n,h,w,3)
- im_gpu = im_gpu.flip(dims=[0]) # flip channel
- im_gpu = im_gpu.permute(1, 2, 0).contiguous() # shape(h,w,3)
- im_gpu = im_gpu * inv_alph_masks[-1] + mcs
- im_mask = (im_gpu * 255)
- im_mask_np = im_mask.byte().cpu().numpy()
- self.im[:] = im_mask_np if retina_masks else scale_image(im_mask_np, self.im.shape)
- if self.pil:
- # Convert im back to PIL and update draw
- self.fromarray(self.im)
- def kpts(self, kpts, shape=(640, 640), radius=5, kpt_line=True):
- """
- Plot keypoints on the image.
- Args:
- kpts (tensor): Predicted keypoints with shape [17, 3]. Each keypoint has (x, y, confidence).
- shape (tuple): Image shape as a tuple (h, w), where h is the height and w is the width.
- radius (int, optional): Radius of the drawn keypoints. Default is 5.
- kpt_line (bool, optional): If True, the function will draw lines connecting keypoints
- for human pose. Default is True.
- Note: `kpt_line=True` currently only supports human pose plotting.
- """
- if self.pil:
- # Convert to numpy first
- self.im = np.asarray(self.im).copy()
- nkpt, ndim = kpts.shape
- is_pose = nkpt == 17 and ndim == 3
- kpt_line &= is_pose # `kpt_line=True` for now only supports human pose plotting
- for i, k in enumerate(kpts):
- color_k = [int(x) for x in self.kpt_color[i]] if is_pose else colors(i)
- x_coord, y_coord = k[0], k[1]
- if x_coord % shape[1] != 0 and y_coord % shape[0] != 0:
- if len(k) == 3:
- conf = k[2]
- if conf < 0.5:
- continue
- cv2.circle(self.im, (int(x_coord), int(y_coord)), radius, color_k, -1, lineType=cv2.LINE_AA)
- if kpt_line:
- ndim = kpts.shape[-1]
- for i, sk in enumerate(self.skeleton):
- pos1 = (int(kpts[(sk[0] - 1), 0]), int(kpts[(sk[0] - 1), 1]))
- pos2 = (int(kpts[(sk[1] - 1), 0]), int(kpts[(sk[1] - 1), 1]))
- if ndim == 3:
- conf1 = kpts[(sk[0] - 1), 2]
- conf2 = kpts[(sk[1] - 1), 2]
- if conf1 < 0.5 or conf2 < 0.5:
- continue
- if pos1[0] % shape[1] == 0 or pos1[1] % shape[0] == 0 or pos1[0] < 0 or pos1[1] < 0:
- continue
- if pos2[0] % shape[1] == 0 or pos2[1] % shape[0] == 0 or pos2[0] < 0 or pos2[1] < 0:
- continue
- cv2.line(self.im, pos1, pos2, [int(x) for x in self.limb_color[i]], thickness=2, lineType=cv2.LINE_AA)
- if self.pil:
- # Convert im back to PIL and update draw
- self.fromarray(self.im)
- def rectangle(self, xy, fill=None, outline=None, width=1):
- """Add rectangle to image (PIL-only)."""
- self.draw.rectangle(xy, fill, outline, width)
- def text(self, xy, text, txt_color=(255, 255, 255), anchor='top', box_style=False):
- """Adds text to an image using PIL or cv2."""
- if anchor == 'bottom': # start y from font bottom
- w, h = self.font.getsize(text) # text width, height
- xy[1] += 1 - h
- if self.pil:
- if box_style:
- w, h = self.font.getsize(text)
- self.draw.rectangle((xy[0], xy[1], xy[0] + w + 1, xy[1] + h + 1), fill=txt_color)
- # Using `txt_color` for background and draw fg with white color
- txt_color = (255, 255, 255)
- if '\n' in text:
- lines = text.split('\n')
- _, h = self.font.getsize(text)
- for line in lines:
- self.draw.text(xy, line, fill=txt_color, font=self.font)
- xy[1] += h
- else:
- self.draw.text(xy, text, fill=txt_color, font=self.font)
- else:
- if box_style:
- tf = max(self.lw - 1, 1) # font thickness
- w, h = cv2.getTextSize(text, 0, fontScale=self.lw / 3, thickness=tf)[0] # text width, height
- outside = xy[1] - h >= 3
- p2 = xy[0] + w, xy[1] - h - 3 if outside else xy[1] + h + 3
- cv2.rectangle(self.im, xy, p2, txt_color, -1, cv2.LINE_AA) # filled
- # Using `txt_color` for background and draw fg with white color
- txt_color = (255, 255, 255)
- tf = max(self.lw - 1, 1) # font thickness
- cv2.putText(self.im, text, xy, 0, self.lw / 3, txt_color, thickness=tf, lineType=cv2.LINE_AA)
- def fromarray(self, im):
- """Update self.im from a numpy array."""
- self.im = im if isinstance(im, Image.Image) else Image.fromarray(im)
- self.draw = ImageDraw.Draw(self.im)
- def result(self):
- """Return annotated image as array."""
- return np.asarray(self.im)
- @TryExcept() # known issue https://github.com/ultralytics/yolov5/issues/5395
- @plt_settings()
- def plot_labels(boxes, cls, names=(), save_dir=Path(''), on_plot=None):
- """Plot training labels including class histograms and box statistics."""
- import pandas as pd
- import seaborn as sn
- # Filter matplotlib>=3.7.2 warning
- warnings.filterwarnings('ignore', category=UserWarning, message='The figure layout has changed to tight')
- # Plot dataset labels
- LOGGER.info(f"Plotting labels to {save_dir / 'labels.jpg'}... ")
- nc = int(cls.max() + 1) # number of classes
- boxes = boxes[:1000000] # limit to 1M boxes
- x = pd.DataFrame(boxes, columns=['x', 'y', 'width', 'height'])
- # Seaborn correlogram
- sn.pairplot(x, corner=True, diag_kind='auto', kind='hist', diag_kws=dict(bins=50), plot_kws=dict(pmax=0.9))
- plt.savefig(save_dir / 'labels_correlogram.jpg', dpi=200)
- plt.close()
- # Matplotlib labels
- ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)[1].ravel()
- y = ax[0].hist(cls, bins=np.linspace(0, nc, nc + 1) - 0.5, rwidth=0.8)
- with contextlib.suppress(Exception): # color histogram bars by class
- [y[2].patches[i].set_color([x / 255 for x in colors(i)]) for i in range(nc)] # known issue #3195
- ax[0].set_ylabel('instances')
- if 0 < len(names) < 30:
- ax[0].set_xticks(range(len(names)))
- ax[0].set_xticklabels(list(names.values()), rotation=90, fontsize=10)
- else:
- ax[0].set_xlabel('classes')
- sn.histplot(x, x='x', y='y', ax=ax[2], bins=50, pmax=0.9)
- sn.histplot(x, x='width', y='height', ax=ax[3], bins=50, pmax=0.9)
- # Rectangles
- boxes[:, 0:2] = 0.5 # center
- boxes = xywh2xyxy(boxes) * 1000
- img = Image.fromarray(np.ones((1000, 1000, 3), dtype=np.uint8) * 255)
- for cls, box in zip(cls[:500], boxes[:500]):
- ImageDraw.Draw(img).rectangle(box, width=1, outline=colors(cls)) # plot
- ax[1].imshow(img)
- ax[1].axis('off')
- for a in [0, 1, 2, 3]:
- for s in ['top', 'right', 'left', 'bottom']:
- ax[a].spines[s].set_visible(False)
- fname = save_dir / 'labels.jpg'
- plt.savefig(fname, dpi=200)
- plt.close()
- if on_plot:
- on_plot(fname)
- def save_one_box(xyxy, im, file=Path('im.jpg'), gain=1.02, pad=10, square=False, BGR=False, save=True):
- """Save image crop as {file} with crop size multiple {gain} and {pad} pixels. Save and/or return crop.
- This function takes a bounding box and an image, and then saves a cropped portion of the image according
- to the bounding box. Optionally, the crop can be squared, and the function allows for gain and padding
- adjustments to the bounding box.
- Args:
- xyxy (torch.Tensor or list): A tensor or list representing the bounding box in xyxy format.
- im (numpy.ndarray): The input image.
- file (Path, optional): The path where the cropped image will be saved. Defaults to 'im.jpg'.
- gain (float, optional): A multiplicative factor to increase the size of the bounding box. Defaults to 1.02.
- pad (int, optional): The number of pixels to add to the width and height of the bounding box. Defaults to 10.
- square (bool, optional): If True, the bounding box will be transformed into a square. Defaults to False.
- BGR (bool, optional): If True, the image will be saved in BGR format, otherwise in RGB. Defaults to False.
- save (bool, optional): If True, the cropped image will be saved to disk. Defaults to True.
- Returns:
- (numpy.ndarray): The cropped image.
- Example:
- ```python
- from ultralytics.utils.plotting import save_one_box
- xyxy = [50, 50, 150, 150]
- im = cv2.imread('image.jpg')
- cropped_im = save_one_box(xyxy, im, file='cropped.jpg', square=True)
- ```
- """
- if not isinstance(xyxy, torch.Tensor): # may be list
- xyxy = torch.stack(xyxy)
- b = xyxy2xywh(xyxy.view(-1, 4)) # boxes
- if square:
- b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1) # attempt rectangle to square
- b[:, 2:] = b[:, 2:] * gain + pad # box wh * gain + pad
- xyxy = xywh2xyxy(b).long()
- clip_boxes(xyxy, im.shape)
- crop = im[int(xyxy[0, 1]):int(xyxy[0, 3]), int(xyxy[0, 0]):int(xyxy[0, 2]), ::(1 if BGR else -1)]
- if save:
- file.parent.mkdir(parents=True, exist_ok=True) # make directory
- f = str(increment_path(file).with_suffix('.jpg'))
- # cv2.imwrite(f, crop) # save BGR, https://github.com/ultralytics/yolov5/issues/7007 chroma subsampling issue
- Image.fromarray(crop[..., ::-1]).save(f, quality=95, subsampling=0) # save RGB
- return crop
- @threaded
- def plot_images(images,
- batch_idx,
- cls,
- bboxes=np.zeros(0, dtype=np.float32),
- masks=np.zeros(0, dtype=np.uint8),
- kpts=np.zeros((0, 51), dtype=np.float32),
- paths=None,
- fname='images.jpg',
- names=None,
- on_plot=None):
- """Plot image grid with labels."""
- if isinstance(images, torch.Tensor):
- images = images.cpu().float().numpy()
- if isinstance(cls, torch.Tensor):
- cls = cls.cpu().numpy()
- if isinstance(bboxes, torch.Tensor):
- bboxes = bboxes.cpu().numpy()
- if isinstance(masks, torch.Tensor):
- masks = masks.cpu().numpy().astype(int)
- if isinstance(kpts, torch.Tensor):
- kpts = kpts.cpu().numpy()
- if isinstance(batch_idx, torch.Tensor):
- batch_idx = batch_idx.cpu().numpy()
- max_size = 1920 # max image size
- max_subplots = 16 # max image subplots, i.e. 4x4
- bs, _, h, w = images.shape # batch size, _, height, width
- bs = min(bs, max_subplots) # limit plot images
- ns = np.ceil(bs ** 0.5) # number of subplots (square)
- if np.max(images[0]) <= 1:
- images *= 255 # de-normalise (optional)
- # Build Image
- mosaic = np.full((int(ns * h), int(ns * w), 3), 255, dtype=np.uint8) # init
- for i, im in enumerate(images):
- if i == max_subplots: # if last batch has fewer images than we expect
- break
- x, y = int(w * (i // ns)), int(h * (i % ns)) # block origin
- im = im.transpose(1, 2, 0)
- mosaic[y:y + h, x:x + w, :] = im
- # Resize (optional)
- scale = max_size / ns / max(h, w)
- if scale < 1:
- h = math.ceil(scale * h)
- w = math.ceil(scale * w)
- mosaic = cv2.resize(mosaic, tuple(int(x * ns) for x in (w, h)))
- # Annotate
- fs = int((h + w) * ns * 0.01) # font size
- annotator = Annotator(mosaic, line_width=round(fs / 10), font_size=fs, pil=True, example=names)
- for i in range(i + 1):
- x, y = int(w * (i // ns)), int(h * (i % ns)) # block origin
- annotator.rectangle([x, y, x + w, y + h], None, (255, 255, 255), width=2) # borders
- if paths:
- annotator.text((x + 5, y + 5), text=Path(paths[i]).name[:40], txt_color=(220, 220, 220)) # filenames
- if len(cls) > 0:
- idx = batch_idx == i
- classes = cls[idx].astype('int')
- if len(bboxes):
- boxes = xywh2xyxy(bboxes[idx, :4]).T
- labels = bboxes.shape[1] == 4 # labels if no conf column
- conf = None if labels else bboxes[idx, 4] # check for confidence presence (label vs pred)
- if boxes.shape[1]:
- if boxes.max() <= 1.01: # if normalized with tolerance 0.01
- boxes[[0, 2]] *= w # scale to pixels
- boxes[[1, 3]] *= h
- elif scale < 1: # absolute coords need scale if image scales
- boxes *= scale
- boxes[[0, 2]] += x
- boxes[[1, 3]] += y
- for j, box in enumerate(boxes.T.tolist()):
- c = classes[j]
- color = colors(c)
- c = names.get(c, c) if names else c
- if labels or conf[j] > 0.25: # 0.25 conf thresh
- label = f'{c}' if labels else f'{c} {conf[j]:.1f}'
- annotator.box_label(box, label, color=color)
- elif len(classes):
- for c in classes:
- color = colors(c)
- c = names.get(c, c) if names else c
- annotator.text((x, y), f'{c}', txt_color=color, box_style=True)
- # Plot keypoints
- if len(kpts):
- kpts_ = kpts[idx].copy()
- if len(kpts_):
- if kpts_[..., 0].max() <= 1.01 or kpts_[..., 1].max() <= 1.01: # if normalized with tolerance .01
- kpts_[..., 0] *= w # scale to pixels
- kpts_[..., 1] *= h
- elif scale < 1: # absolute coords need scale if image scales
- kpts_ *= scale
- kpts_[..., 0] += x
- kpts_[..., 1] += y
- for j in range(len(kpts_)):
- if labels or conf[j] > 0.25: # 0.25 conf thresh
- annotator.kpts(kpts_[j])
- # Plot masks
- if len(masks):
- if idx.shape[0] == masks.shape[0]: # overlap_masks=False
- image_masks = masks[idx]
- else: # overlap_masks=True
- image_masks = masks[[i]] # (1, 640, 640)
- nl = idx.sum()
- index = np.arange(nl).reshape((nl, 1, 1)) + 1
- image_masks = np.repeat(image_masks, nl, axis=0)
- image_masks = np.where(image_masks == index, 1.0, 0.0)
- im = np.asarray(annotator.im).copy()
- for j, box in enumerate(boxes.T.tolist()):
- if labels or conf[j] > 0.25: # 0.25 conf thresh
- color = colors(classes[j])
- mh, mw = image_masks[j].shape
- if mh != h or mw != w:
- mask = image_masks[j].astype(np.uint8)
- mask = cv2.resize(mask, (w, h))
- mask = mask.astype(bool)
- else:
- mask = image_masks[j].astype(bool)
- with contextlib.suppress(Exception):
- im[y:y + h, x:x + w, :][mask] = im[y:y + h, x:x + w, :][mask] * 0.4 + np.array(color) * 0.6
- annotator.fromarray(im)
- annotator.im.save(fname) # save
- if on_plot:
- on_plot(fname)
- @plt_settings()
- def plot_results(file='path/to/results.csv', dir='', segment=False, pose=False, classify=False, on_plot=None):
- """
- Plot training results from results CSV file.
- Example:
- ```python
- from ultralytics.utils.plotting import plot_results
- plot_results('path/to/results.csv')
- ```
- """
- import pandas as pd
- from scipy.ndimage import gaussian_filter1d
- save_dir = Path(file).parent if file else Path(dir)
- if classify:
- fig, ax = plt.subplots(2, 2, figsize=(6, 6), tight_layout=True)
- index = [1, 4, 2, 3]
- elif segment:
- fig, ax = plt.subplots(2, 8, figsize=(18, 6), tight_layout=True)
- index = [1, 2, 3, 4, 5, 6, 9, 10, 13, 14, 15, 16, 7, 8, 11, 12]
- elif pose:
- fig, ax = plt.subplots(2, 9, figsize=(21, 6), tight_layout=True)
- index = [1, 2, 3, 4, 5, 6, 7, 10, 11, 14, 15, 16, 17, 18, 8, 9, 12, 13]
- else:
- fig, ax = plt.subplots(2, 5, figsize=(12, 6), tight_layout=True)
- index = [1, 2, 3, 4, 5, 8, 9, 10, 6, 7]
- ax = ax.ravel()
- files = list(save_dir.glob('results*.csv'))
- assert len(files), f'No results.csv files found in {save_dir.resolve()}, nothing to plot.'
- for f in files:
- try:
- data = pd.read_csv(f)
- s = [x.strip() for x in data.columns]
- x = data.values[:, 0]
- for i, j in enumerate(index):
- y = data.values[:, j].astype('float')
- # y[y == 0] = np.nan # don't show zero values
- ax[i].plot(x, y, marker='.', label=f.stem, linewidth=2, markersize=8) # actual results
- ax[i].plot(x, gaussian_filter1d(y, sigma=3), ':', label='smooth', linewidth=2) # smoothing line
- ax[i].set_title(s[j], fontsize=12)
- # if j in [8, 9, 10]: # share train and val loss y axes
- # ax[i].get_shared_y_axes().join(ax[i], ax[i - 5])
- except Exception as e:
- LOGGER.warning(f'WARNING: Plotting error for {f}: {e}')
- ax[1].legend()
- fname = save_dir / 'results.png'
- fig.savefig(fname, dpi=200)
- plt.close()
- if on_plot:
- on_plot(fname)
- def output_to_target(output, max_det=300):
- """Convert model output to target format [batch_id, class_id, x, y, w, h, conf] for plotting."""
- targets = []
- for i, o in enumerate(output):
- box, conf, cls = o[:max_det, :6].cpu().split((4, 1, 1), 1)
- j = torch.full((conf.shape[0], 1), i)
- targets.append(torch.cat((j, cls, xyxy2xywh(box), conf), 1))
- targets = torch.cat(targets, 0).numpy()
- return targets[:, 0], targets[:, 1], targets[:, 2:]
- def feature_visualization(x, module_type, stage, n=32, save_dir=Path('runs/detect/exp')):
- """
- Visualize feature maps of a given model module during inference.
- Args:
- x (torch.Tensor): Features to be visualized.
- module_type (str): Module type.
- stage (int): Module stage within the model.
- n (int, optional): Maximum number of feature maps to plot. Defaults to 32.
- save_dir (Path, optional): Directory to save results. Defaults to Path('runs/detect/exp').
- """
- for m in ['Detect', 'Pose', 'Segment']:
- if m in module_type:
- return
- batch, channels, height, width = x.shape # batch, channels, height, width
- if height > 1 and width > 1:
- f = save_dir / f"stage{stage}_{module_type.split('.')[-1]}_features.png" # filename
- blocks = torch.chunk(x[0].cpu(), channels, dim=0) # select batch index 0, block by channels
- n = min(n, channels) # number of plots
- fig, ax = plt.subplots(math.ceil(n / 8), 8, tight_layout=True) # 8 rows x n/8 cols
- ax = ax.ravel()
- plt.subplots_adjust(wspace=0.05, hspace=0.05)
- for i in range(n):
- ax[i].imshow(blocks[i].squeeze()) # cmap='gray'
- ax[i].axis('off')
- LOGGER.info(f'Saving {f}... ({n}/{channels})')
- plt.savefig(f, dpi=300, bbox_inches='tight')
- plt.close()
- np.save(str(f.with_suffix('.npy')), x[0].cpu().numpy()) # npy save
|