123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104 |
- # Ultralytics YOLO 🚀, AGPL-3.0 license
- import matplotlib.image as mpimg
- import matplotlib.pyplot as plt
- from ultralytics.utils import LOGGER, SETTINGS, TESTS_RUNNING
- from ultralytics.utils.torch_utils import model_info_for_loggers
- try:
- import neptune
- from neptune.types import File
- assert not TESTS_RUNNING # do not log pytest
- assert hasattr(neptune, '__version__')
- assert SETTINGS['neptune'] is True # verify integration is enabled
- except (ImportError, AssertionError):
- neptune = None
- run = None # NeptuneAI experiment logger instance
- def _log_scalars(scalars, step=0):
- """Log scalars to the NeptuneAI experiment logger."""
- if run:
- for k, v in scalars.items():
- run[k].append(value=v, step=step)
- def _log_images(imgs_dict, group=''):
- """Log scalars to the NeptuneAI experiment logger."""
- if run:
- for k, v in imgs_dict.items():
- run[f'{group}/{k}'].upload(File(v))
- def _log_plot(title, plot_path):
- """Log plots to the NeptuneAI experiment logger."""
- """
- Log image as plot in the plot section of NeptuneAI
- arguments:
- title (str) Title of the plot
- plot_path (PosixPath or str) Path to the saved image file
- """
- img = mpimg.imread(plot_path)
- fig = plt.figure()
- ax = fig.add_axes([0, 0, 1, 1], frameon=False, aspect='auto', xticks=[], yticks=[]) # no ticks
- ax.imshow(img)
- run[f'Plots/{title}'].upload(fig)
- def on_pretrain_routine_start(trainer):
- """Callback function called before the training routine starts."""
- try:
- global run
- run = neptune.init_run(project=trainer.args.project or 'YOLOv8', name=trainer.args.name, tags=['YOLOv8'])
- run['Configuration/Hyperparameters'] = {k: '' if v is None else v for k, v in vars(trainer.args).items()}
- except Exception as e:
- LOGGER.warning(f'WARNING ⚠️ NeptuneAI installed but not initialized correctly, not logging this run. {e}')
- def on_train_epoch_end(trainer):
- """Callback function called at end of each training epoch."""
- _log_scalars(trainer.label_loss_items(trainer.tloss, prefix='train'), trainer.epoch + 1)
- _log_scalars(trainer.lr, trainer.epoch + 1)
- if trainer.epoch == 1:
- _log_images({f.stem: str(f) for f in trainer.save_dir.glob('train_batch*.jpg')}, 'Mosaic')
- def on_fit_epoch_end(trainer):
- """Callback function called at end of each fit (train+val) epoch."""
- if run and trainer.epoch == 0:
- run['Configuration/Model'] = model_info_for_loggers(trainer)
- _log_scalars(trainer.metrics, trainer.epoch + 1)
- def on_val_end(validator):
- """Callback function called at end of each validation."""
- if run:
- # Log val_labels and val_pred
- _log_images({f.stem: str(f) for f in validator.save_dir.glob('val*.jpg')}, 'Validation')
- def on_train_end(trainer):
- """Callback function called at end of training."""
- if run:
- # Log final results, CM matrix + PR plots
- files = [
- 'results.png', 'confusion_matrix.png', 'confusion_matrix_normalized.png',
- *(f'{x}_curve.png' for x in ('F1', 'PR', 'P', 'R'))]
- files = [(trainer.save_dir / f) for f in files if (trainer.save_dir / f).exists()] # filter
- for f in files:
- _log_plot(title=f.stem, plot_path=f)
- # Log the final model
- run[f'weights/{trainer.args.name or trainer.args.task}/{str(trainer.best.name)}'].upload(File(str(
- trainer.best)))
- callbacks = {
- 'on_pretrain_routine_start': on_pretrain_routine_start,
- 'on_train_epoch_end': on_train_epoch_end,
- 'on_fit_epoch_end': on_fit_epoch_end,
- 'on_val_end': on_val_end,
- 'on_train_end': on_train_end} if neptune else {}
|