123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139 |
- # Ultralytics YOLO 🚀, AGPL-3.0 license
- import re
- import matplotlib.image as mpimg
- import matplotlib.pyplot as plt
- from ultralytics.utils import LOGGER, SETTINGS, TESTS_RUNNING
- from ultralytics.utils.torch_utils import model_info_for_loggers
- try:
- import clearml
- from clearml import Task
- from clearml.binding.frameworks.pytorch_bind import PatchPyTorchModelIO
- from clearml.binding.matplotlib_bind import PatchedMatplotlib
- assert hasattr(clearml, '__version__') # verify package is not directory
- assert not TESTS_RUNNING # do not log pytest
- assert SETTINGS['clearml'] is True # verify integration is enabled
- except (ImportError, AssertionError):
- clearml = None
- def _log_debug_samples(files, title='Debug Samples') -> None:
- """
- Log files (images) as debug samples in the ClearML task.
- Args:
- files (list): A list of file paths in PosixPath format.
- title (str): A title that groups together images with the same values.
- """
- if task := Task.current_task():
- for f in files:
- if f.exists():
- it = re.search(r'_batch(\d+)', f.name)
- iteration = int(it.groups()[0]) if it else 0
- task.get_logger().report_image(title=title,
- series=f.name.replace(it.group(), ''),
- local_path=str(f),
- iteration=iteration)
- def _log_plot(title, plot_path) -> None:
- """
- Log an image as a plot in the plot section of ClearML.
- Args:
- title (str): The title of the plot.
- plot_path (str): The path to the saved image file.
- """
- img = mpimg.imread(plot_path)
- fig = plt.figure()
- ax = fig.add_axes([0, 0, 1, 1], frameon=False, aspect='auto', xticks=[], yticks=[]) # no ticks
- ax.imshow(img)
- Task.current_task().get_logger().report_matplotlib_figure(title=title,
- series='',
- figure=fig,
- report_interactive=False)
- def on_pretrain_routine_start(trainer):
- """Runs at start of pretraining routine; initializes and connects/ logs task to ClearML."""
- try:
- if task := Task.current_task():
- # Make sure the automatic pytorch and matplotlib bindings are disabled!
- # We are logging these plots and model files manually in the integration
- PatchPyTorchModelIO.update_current_task(None)
- PatchedMatplotlib.update_current_task(None)
- else:
- task = Task.init(project_name=trainer.args.project or 'YOLOv8',
- task_name=trainer.args.name,
- tags=['YOLOv8'],
- output_uri=True,
- reuse_last_task_id=False,
- auto_connect_frameworks={
- 'pytorch': False,
- 'matplotlib': False})
- LOGGER.warning('ClearML Initialized a new task. If you want to run remotely, '
- 'please add clearml-init and connect your arguments before initializing YOLO.')
- task.connect(vars(trainer.args), name='General')
- except Exception as e:
- LOGGER.warning(f'WARNING ⚠️ ClearML installed but not initialized correctly, not logging this run. {e}')
- def on_train_epoch_end(trainer):
- """Logs debug samples for the first epoch of YOLO training and report current training progress."""
- if task := Task.current_task():
- # Log debug samples
- if trainer.epoch == 1:
- _log_debug_samples(sorted(trainer.save_dir.glob('train_batch*.jpg')), 'Mosaic')
- # Report the current training progress
- for k, v in trainer.validator.metrics.results_dict.items():
- task.get_logger().report_scalar('train', k, v, iteration=trainer.epoch)
- def on_fit_epoch_end(trainer):
- """Reports model information to logger at the end of an epoch."""
- if task := Task.current_task():
- # You should have access to the validation bboxes under jdict
- task.get_logger().report_scalar(title='Epoch Time',
- series='Epoch Time',
- value=trainer.epoch_time,
- iteration=trainer.epoch)
- if trainer.epoch == 0:
- for k, v in model_info_for_loggers(trainer).items():
- task.get_logger().report_single_value(k, v)
- def on_val_end(validator):
- """Logs validation results including labels and predictions."""
- if Task.current_task():
- # Log val_labels and val_pred
- _log_debug_samples(sorted(validator.save_dir.glob('val*.jpg')), 'Validation')
- def on_train_end(trainer):
- """Logs final model and its name on training completion."""
- if task := Task.current_task():
- # Log final results, CM matrix + PR plots
- files = [
- 'results.png', 'confusion_matrix.png', 'confusion_matrix_normalized.png',
- *(f'{x}_curve.png' for x in ('F1', 'PR', 'P', 'R'))]
- files = [(trainer.save_dir / f) for f in files if (trainer.save_dir / f).exists()] # filter
- for f in files:
- _log_plot(title=f.stem, plot_path=f)
- # Report final metrics
- for k, v in trainer.validator.metrics.results_dict.items():
- task.get_logger().report_single_value(k, v)
- # Log the final model
- task.update_output_model(model_path=str(trainer.best), model_name=trainer.args.name, auto_delete_file=False)
- callbacks = {
- 'on_pretrain_routine_start': on_pretrain_routine_start,
- 'on_train_epoch_end': on_train_epoch_end,
- 'on_fit_epoch_end': on_fit_epoch_end,
- 'on_val_end': on_val_end,
- 'on_train_end': on_train_end} if clearml else {}
|