123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126 |
- # Ultralytics YOLO 🚀, AGPL-3.0 license
- import numpy as np
- import scipy
- from scipy.spatial.distance import cdist
- from ultralytics.utils.metrics import bbox_ioa
- try:
- import lap # for linear_assignment
- assert lap.__version__ # verify package is not directory
- except (ImportError, AssertionError, AttributeError):
- from ultralytics.utils.checks import check_requirements
- check_requirements('lapx>=0.5.2') # update to lap package from https://github.com/rathaROG/lapx
- import lap
- def linear_assignment(cost_matrix, thresh, use_lap=True):
- """
- Perform linear assignment using scipy or lap.lapjv.
- Args:
- cost_matrix (np.ndarray): The matrix containing cost values for assignments.
- thresh (float): Threshold for considering an assignment valid.
- use_lap (bool, optional): Whether to use lap.lapjv. Defaults to True.
- Returns:
- (tuple): Tuple containing matched indices, unmatched indices from 'a', and unmatched indices from 'b'.
- """
- if cost_matrix.size == 0:
- return np.empty((0, 2), dtype=int), tuple(range(cost_matrix.shape[0])), tuple(range(cost_matrix.shape[1]))
- if use_lap:
- # https://github.com/gatagat/lap
- _, x, y = lap.lapjv(cost_matrix, extend_cost=True, cost_limit=thresh)
- matches = [[ix, mx] for ix, mx in enumerate(x) if mx >= 0]
- unmatched_a = np.where(x < 0)[0]
- unmatched_b = np.where(y < 0)[0]
- else:
- # https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.linear_sum_assignment.html
- x, y = scipy.optimize.linear_sum_assignment(cost_matrix) # row x, col y
- matches = np.asarray([[x[i], y[i]] for i in range(len(x)) if cost_matrix[x[i], y[i]] <= thresh])
- if len(matches) == 0:
- unmatched_a = list(np.arange(cost_matrix.shape[0]))
- unmatched_b = list(np.arange(cost_matrix.shape[1]))
- else:
- unmatched_a = list(set(np.arange(cost_matrix.shape[0])) - set(matches[:, 0]))
- unmatched_b = list(set(np.arange(cost_matrix.shape[1])) - set(matches[:, 1]))
- return matches, unmatched_a, unmatched_b
- def iou_distance(atracks, btracks):
- """
- Compute cost based on Intersection over Union (IoU) between tracks.
- Args:
- atracks (list[STrack] | list[np.ndarray]): List of tracks 'a' or bounding boxes.
- btracks (list[STrack] | list[np.ndarray]): List of tracks 'b' or bounding boxes.
- Returns:
- (np.ndarray): Cost matrix computed based on IoU.
- """
- if (len(atracks) > 0 and isinstance(atracks[0], np.ndarray)) \
- or (len(btracks) > 0 and isinstance(btracks[0], np.ndarray)):
- atlbrs = atracks
- btlbrs = btracks
- else:
- atlbrs = [track.tlbr for track in atracks]
- btlbrs = [track.tlbr for track in btracks]
- ious = np.zeros((len(atlbrs), len(btlbrs)), dtype=np.float32)
- if len(atlbrs) and len(btlbrs):
- ious = bbox_ioa(np.ascontiguousarray(atlbrs, dtype=np.float32),
- np.ascontiguousarray(btlbrs, dtype=np.float32),
- iou=True)
- return 1 - ious # cost matrix
- def embedding_distance(tracks, detections, metric='cosine'):
- """
- Compute distance between tracks and detections based on embeddings.
- Args:
- tracks (list[STrack]): List of tracks.
- detections (list[BaseTrack]): List of detections.
- metric (str, optional): Metric for distance computation. Defaults to 'cosine'.
- Returns:
- (np.ndarray): Cost matrix computed based on embeddings.
- """
- cost_matrix = np.zeros((len(tracks), len(detections)), dtype=np.float32)
- if cost_matrix.size == 0:
- return cost_matrix
- det_features = np.asarray([track.curr_feat for track in detections], dtype=np.float32)
- # for i, track in enumerate(tracks):
- # cost_matrix[i, :] = np.maximum(0.0, cdist(track.smooth_feat.reshape(1,-1), det_features, metric))
- track_features = np.asarray([track.smooth_feat for track in tracks], dtype=np.float32)
- cost_matrix = np.maximum(0.0, cdist(track_features, det_features, metric)) # Normalized features
- return cost_matrix
- def fuse_score(cost_matrix, detections):
- """
- Fuses cost matrix with detection scores to produce a single similarity matrix.
- Args:
- cost_matrix (np.ndarray): The matrix containing cost values for assignments.
- detections (list[BaseTrack]): List of detections with scores.
- Returns:
- (np.ndarray): Fused similarity matrix.
- """
- if cost_matrix.size == 0:
- return cost_matrix
- iou_sim = 1 - cost_matrix
- det_scores = np.array([det.score for det in detections])
- det_scores = np.expand_dims(det_scores, axis=0).repeat(cost_matrix.shape[0], axis=0)
- fuse_sim = iou_sim * det_scores
- return 1 - fuse_sim # fuse_cost
|