123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147 |
- # Ultralytics YOLO 🚀, AGPL-3.0 license
- from collections import deque
- import numpy as np
- from .basetrack import TrackState
- from .byte_tracker import BYTETracker, STrack
- from .utils import matching
- from .utils.gmc import GMC
- from .utils.kalman_filter import KalmanFilterXYWH
- class BOTrack(STrack):
- shared_kalman = KalmanFilterXYWH()
- def __init__(self, tlwh, score, cls, feat=None, feat_history=50):
- """Initialize YOLOv8 object with temporal parameters, such as feature history, alpha and current features."""
- super().__init__(tlwh, score, cls)
- self.smooth_feat = None
- self.curr_feat = None
- if feat is not None:
- self.update_features(feat)
- self.features = deque([], maxlen=feat_history)
- self.alpha = 0.9
- def update_features(self, feat):
- """Update features vector and smooth it using exponential moving average."""
- feat /= np.linalg.norm(feat)
- self.curr_feat = feat
- if self.smooth_feat is None:
- self.smooth_feat = feat
- else:
- self.smooth_feat = self.alpha * self.smooth_feat + (1 - self.alpha) * feat
- self.features.append(feat)
- self.smooth_feat /= np.linalg.norm(self.smooth_feat)
- def predict(self):
- """Predicts the mean and covariance using Kalman filter."""
- mean_state = self.mean.copy()
- if self.state != TrackState.Tracked:
- mean_state[6] = 0
- mean_state[7] = 0
- self.mean, self.covariance = self.kalman_filter.predict(mean_state, self.covariance)
- def re_activate(self, new_track, frame_id, new_id=False):
- """Reactivates a track with updated features and optionally assigns a new ID."""
- if new_track.curr_feat is not None:
- self.update_features(new_track.curr_feat)
- super().re_activate(new_track, frame_id, new_id)
- def update(self, new_track, frame_id):
- """Update the YOLOv8 instance with new track and frame ID."""
- if new_track.curr_feat is not None:
- self.update_features(new_track.curr_feat)
- super().update(new_track, frame_id)
- @property
- def tlwh(self):
- """Get current position in bounding box format `(top left x, top left y,
- width, height)`.
- """
- if self.mean is None:
- return self._tlwh.copy()
- ret = self.mean[:4].copy()
- ret[:2] -= ret[2:] / 2
- return ret
- @staticmethod
- def multi_predict(stracks):
- """Predicts the mean and covariance of multiple object tracks using shared Kalman filter."""
- if len(stracks) <= 0:
- return
- multi_mean = np.asarray([st.mean.copy() for st in stracks])
- multi_covariance = np.asarray([st.covariance for st in stracks])
- for i, st in enumerate(stracks):
- if st.state != TrackState.Tracked:
- multi_mean[i][6] = 0
- multi_mean[i][7] = 0
- multi_mean, multi_covariance = BOTrack.shared_kalman.multi_predict(multi_mean, multi_covariance)
- for i, (mean, cov) in enumerate(zip(multi_mean, multi_covariance)):
- stracks[i].mean = mean
- stracks[i].covariance = cov
- def convert_coords(self, tlwh):
- """Converts Top-Left-Width-Height bounding box coordinates to X-Y-Width-Height format."""
- return self.tlwh_to_xywh(tlwh)
- @staticmethod
- def tlwh_to_xywh(tlwh):
- """Convert bounding box to format `(center x, center y, width,
- height)`.
- """
- ret = np.asarray(tlwh).copy()
- ret[:2] += ret[2:] / 2
- return ret
- class BOTSORT(BYTETracker):
- def __init__(self, args, frame_rate=30):
- """Initialize YOLOv8 object with ReID module and GMC algorithm."""
- super().__init__(args, frame_rate)
- # ReID module
- self.proximity_thresh = args.proximity_thresh
- self.appearance_thresh = args.appearance_thresh
- if args.with_reid:
- # Haven't supported BoT-SORT(reid) yet
- self.encoder = None
- self.gmc = GMC(method=args.gmc_method)
- def get_kalmanfilter(self):
- """Returns an instance of KalmanFilterXYWH for object tracking."""
- return KalmanFilterXYWH()
- def init_track(self, dets, scores, cls, img=None):
- """Initialize track with detections, scores, and classes."""
- if len(dets) == 0:
- return []
- if self.args.with_reid and self.encoder is not None:
- features_keep = self.encoder.inference(img, dets)
- return [BOTrack(xyxy, s, c, f) for (xyxy, s, c, f) in zip(dets, scores, cls, features_keep)] # detections
- else:
- return [BOTrack(xyxy, s, c) for (xyxy, s, c) in zip(dets, scores, cls)] # detections
- def get_dists(self, tracks, detections):
- """Get distances between tracks and detections using IoU and (optionally) ReID embeddings."""
- dists = matching.iou_distance(tracks, detections)
- dists_mask = (dists > self.proximity_thresh)
- # TODO: mot20
- # if not self.args.mot20:
- dists = matching.fuse_score(dists, detections)
- if self.args.with_reid and self.encoder is not None:
- emb_dists = matching.embedding_distance(tracks, detections) / 2.0
- emb_dists[emb_dists > self.appearance_thresh] = 1.0
- emb_dists[dists_mask] = 1.0
- dists = np.minimum(dists, emb_dists)
- return dists
- def multi_predict(self, tracks):
- """Predict and track multiple objects with YOLOv8 model."""
- BOTrack.multi_predict(tracks)
|