123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294 |
- # Ultralytics YOLO 🚀, AGPL-3.0 license
- """
- Convolution modules
- """
- import math
- import numpy as np
- import torch
- import torch.nn as nn
- __all__ = ('Conv', 'Conv2', 'LightConv', 'DWConv', 'DWConvTranspose2d', 'ConvTranspose', 'Focus', 'GhostConv',
- 'ChannelAttention', 'SpatialAttention', 'CBAM', 'Concat', 'RepConv')
- def autopad(k, p=None, d=1): # kernel, padding, dilation
- """Pad to 'same' shape outputs."""
- if d > 1:
- k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k] # actual kernel-size
- if p is None:
- p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad
- return p
- class Conv(nn.Module):
- """Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation)."""
- default_act = nn.SiLU() # default activation
- def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):
- """Initialize Conv layer with given arguments including activation."""
- super().__init__()
- self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)
- self.bn = nn.BatchNorm2d(c2)
- self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()
- def forward(self, x):
- """Apply convolution, batch normalization and activation to input tensor."""
- return self.act(self.bn(self.conv(x)))
- def forward_fuse(self, x):
- """Perform transposed convolution of 2D data."""
- return self.act(self.conv(x))
- class Conv2(Conv):
- """Simplified RepConv module with Conv fusing."""
- def __init__(self, c1, c2, k=3, s=1, p=None, g=1, d=1, act=True):
- """Initialize Conv layer with given arguments including activation."""
- super().__init__(c1, c2, k, s, p, g=g, d=d, act=act)
- self.cv2 = nn.Conv2d(c1, c2, 1, s, autopad(1, p, d), groups=g, dilation=d, bias=False) # add 1x1 conv
- def forward(self, x):
- """Apply convolution, batch normalization and activation to input tensor."""
- return self.act(self.bn(self.conv(x) + self.cv2(x)))
- def forward_fuse(self, x):
- """Apply fused convolution, batch normalization and activation to input tensor."""
- return self.act(self.bn(self.conv(x)))
- def fuse_convs(self):
- """Fuse parallel convolutions."""
- w = torch.zeros_like(self.conv.weight.data)
- i = [x // 2 for x in w.shape[2:]]
- w[:, :, i[0]:i[0] + 1, i[1]:i[1] + 1] = self.cv2.weight.data.clone()
- self.conv.weight.data += w
- self.__delattr__('cv2')
- self.forward = self.forward_fuse
- class LightConv(nn.Module):
- """Light convolution with args(ch_in, ch_out, kernel).
- https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/backbones/hgnet_v2.py
- """
- def __init__(self, c1, c2, k=1, act=nn.ReLU()):
- """Initialize Conv layer with given arguments including activation."""
- super().__init__()
- self.conv1 = Conv(c1, c2, 1, act=False)
- self.conv2 = DWConv(c2, c2, k, act=act)
- def forward(self, x):
- """Apply 2 convolutions to input tensor."""
- return self.conv2(self.conv1(x))
- class DWConv(Conv):
- """Depth-wise convolution."""
- def __init__(self, c1, c2, k=1, s=1, d=1, act=True): # ch_in, ch_out, kernel, stride, dilation, activation
- super().__init__(c1, c2, k, s, g=math.gcd(c1, c2), d=d, act=act)
- class DWConvTranspose2d(nn.ConvTranspose2d):
- """Depth-wise transpose convolution."""
- def __init__(self, c1, c2, k=1, s=1, p1=0, p2=0): # ch_in, ch_out, kernel, stride, padding, padding_out
- super().__init__(c1, c2, k, s, p1, p2, groups=math.gcd(c1, c2))
- class ConvTranspose(nn.Module):
- """Convolution transpose 2d layer."""
- default_act = nn.SiLU() # default activation
- def __init__(self, c1, c2, k=2, s=2, p=0, bn=True, act=True):
- """Initialize ConvTranspose2d layer with batch normalization and activation function."""
- super().__init__()
- self.conv_transpose = nn.ConvTranspose2d(c1, c2, k, s, p, bias=not bn)
- self.bn = nn.BatchNorm2d(c2) if bn else nn.Identity()
- self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()
- def forward(self, x):
- """Applies transposed convolutions, batch normalization and activation to input."""
- return self.act(self.bn(self.conv_transpose(x)))
- def forward_fuse(self, x):
- """Applies activation and convolution transpose operation to input."""
- return self.act(self.conv_transpose(x))
- class Focus(nn.Module):
- """Focus wh information into c-space."""
- def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
- super().__init__()
- self.conv = Conv(c1 * 4, c2, k, s, p, g, act=act)
- # self.contract = Contract(gain=2)
- def forward(self, x): # x(b,c,w,h) -> y(b,4c,w/2,h/2)
- return self.conv(torch.cat((x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]), 1))
- # return self.conv(self.contract(x))
- class GhostConv(nn.Module):
- """Ghost Convolution https://github.com/huawei-noah/ghostnet."""
- def __init__(self, c1, c2, k=1, s=1, g=1, act=True): # ch_in, ch_out, kernel, stride, groups
- super().__init__()
- c_ = c2 // 2 # hidden channels
- self.cv1 = Conv(c1, c_, k, s, None, g, act=act)
- self.cv2 = Conv(c_, c_, 5, 1, None, c_, act=act)
- def forward(self, x):
- """Forward propagation through a Ghost Bottleneck layer with skip connection."""
- y = self.cv1(x)
- return torch.cat((y, self.cv2(y)), 1)
- class RepConv(nn.Module):
- """
- RepConv is a basic rep-style block, including training and deploy status. This module is used in RT-DETR.
- Based on https://github.com/DingXiaoH/RepVGG/blob/main/repvgg.py
- """
- default_act = nn.SiLU() # default activation
- def __init__(self, c1, c2, k=3, s=1, p=1, g=1, d=1, act=True, bn=False, deploy=False):
- super().__init__()
- assert k == 3 and p == 1
- self.g = g
- self.c1 = c1
- self.c2 = c2
- self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()
- self.bn = nn.BatchNorm2d(num_features=c1) if bn and c2 == c1 and s == 1 else None
- self.conv1 = Conv(c1, c2, k, s, p=p, g=g, act=False)
- self.conv2 = Conv(c1, c2, 1, s, p=(p - k // 2), g=g, act=False)
- def forward_fuse(self, x):
- """Forward process"""
- return self.act(self.conv(x))
- def forward(self, x):
- """Forward process"""
- id_out = 0 if self.bn is None else self.bn(x)
- return self.act(self.conv1(x) + self.conv2(x) + id_out)
- def get_equivalent_kernel_bias(self):
- kernel3x3, bias3x3 = self._fuse_bn_tensor(self.conv1)
- kernel1x1, bias1x1 = self._fuse_bn_tensor(self.conv2)
- kernelid, biasid = self._fuse_bn_tensor(self.bn)
- return kernel3x3 + self._pad_1x1_to_3x3_tensor(kernel1x1) + kernelid, bias3x3 + bias1x1 + biasid
- def _pad_1x1_to_3x3_tensor(self, kernel1x1):
- if kernel1x1 is None:
- return 0
- else:
- return torch.nn.functional.pad(kernel1x1, [1, 1, 1, 1])
- def _fuse_bn_tensor(self, branch):
- if branch is None:
- return 0, 0
- if isinstance(branch, Conv):
- kernel = branch.conv.weight
- running_mean = branch.bn.running_mean
- running_var = branch.bn.running_var
- gamma = branch.bn.weight
- beta = branch.bn.bias
- eps = branch.bn.eps
- elif isinstance(branch, nn.BatchNorm2d):
- if not hasattr(self, 'id_tensor'):
- input_dim = self.c1 // self.g
- kernel_value = np.zeros((self.c1, input_dim, 3, 3), dtype=np.float32)
- for i in range(self.c1):
- kernel_value[i, i % input_dim, 1, 1] = 1
- self.id_tensor = torch.from_numpy(kernel_value).to(branch.weight.device)
- kernel = self.id_tensor
- running_mean = branch.running_mean
- running_var = branch.running_var
- gamma = branch.weight
- beta = branch.bias
- eps = branch.eps
- std = (running_var + eps).sqrt()
- t = (gamma / std).reshape(-1, 1, 1, 1)
- return kernel * t, beta - running_mean * gamma / std
- def fuse_convs(self):
- if hasattr(self, 'conv'):
- return
- kernel, bias = self.get_equivalent_kernel_bias()
- self.conv = nn.Conv2d(in_channels=self.conv1.conv.in_channels,
- out_channels=self.conv1.conv.out_channels,
- kernel_size=self.conv1.conv.kernel_size,
- stride=self.conv1.conv.stride,
- padding=self.conv1.conv.padding,
- dilation=self.conv1.conv.dilation,
- groups=self.conv1.conv.groups,
- bias=True).requires_grad_(False)
- self.conv.weight.data = kernel
- self.conv.bias.data = bias
- for para in self.parameters():
- para.detach_()
- self.__delattr__('conv1')
- self.__delattr__('conv2')
- if hasattr(self, 'nm'):
- self.__delattr__('nm')
- if hasattr(self, 'bn'):
- self.__delattr__('bn')
- if hasattr(self, 'id_tensor'):
- self.__delattr__('id_tensor')
- class ChannelAttention(nn.Module):
- """Channel-attention module https://github.com/open-mmlab/mmdetection/tree/v3.0.0rc1/configs/rtmdet."""
- def __init__(self, channels: int) -> None:
- super().__init__()
- self.pool = nn.AdaptiveAvgPool2d(1)
- self.fc = nn.Conv2d(channels, channels, 1, 1, 0, bias=True)
- self.act = nn.Sigmoid()
- def forward(self, x: torch.Tensor) -> torch.Tensor:
- return x * self.act(self.fc(self.pool(x)))
- class SpatialAttention(nn.Module):
- """Spatial-attention module."""
- def __init__(self, kernel_size=7):
- """Initialize Spatial-attention module with kernel size argument."""
- super().__init__()
- assert kernel_size in (3, 7), 'kernel size must be 3 or 7'
- padding = 3 if kernel_size == 7 else 1
- self.cv1 = nn.Conv2d(2, 1, kernel_size, padding=padding, bias=False)
- self.act = nn.Sigmoid()
- def forward(self, x):
- """Apply channel and spatial attention on input for feature recalibration."""
- return x * self.act(self.cv1(torch.cat([torch.mean(x, 1, keepdim=True), torch.max(x, 1, keepdim=True)[0]], 1)))
- class CBAM(nn.Module):
- """Convolutional Block Attention Module."""
- def __init__(self, c1, kernel_size=7): # ch_in, kernels
- super().__init__()
- self.channel_attention = ChannelAttention(c1)
- self.spatial_attention = SpatialAttention(kernel_size)
- def forward(self, x):
- """Applies the forward pass through C1 module."""
- return self.spatial_attention(self.channel_attention(x))
- class Concat(nn.Module):
- """Concatenate a list of tensors along dimension."""
- def __init__(self, dimension=1):
- """Concatenates a list of tensors along a specified dimension."""
- super().__init__()
- self.d = dimension
- def forward(self, x):
- """Forward pass for the YOLOv8 mask Proto module."""
- return torch.cat(x, self.d)
|