12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152 |
- # Ultralytics YOLO 🚀, AGPL-3.0 license
- from ultralytics.engine.results import Results
- from ultralytics.models.yolo.detect.predict import DetectionPredictor
- from ultralytics.utils import DEFAULT_CFG, ops
- class SegmentationPredictor(DetectionPredictor):
- """
- A class extending the DetectionPredictor class for prediction based on a segmentation model.
- Example:
- ```python
- from ultralytics.utils import ASSETS
- from ultralytics.models.yolo.segment import SegmentationPredictor
- args = dict(model='yolov8n-seg.pt', source=ASSETS)
- predictor = SegmentationPredictor(overrides=args)
- predictor.predict_cli()
- ```
- """
- def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
- super().__init__(cfg, overrides, _callbacks)
- self.args.task = 'segment'
- def postprocess(self, preds, img, orig_imgs):
- p = ops.non_max_suppression(preds[0],
- self.args.conf,
- self.args.iou,
- agnostic=self.args.agnostic_nms,
- max_det=self.args.max_det,
- nc=len(self.model.names),
- classes=self.args.classes)
- results = []
- is_list = isinstance(orig_imgs, list) # input images are a list, not a torch.Tensor
- proto = preds[1][-1] if len(preds[1]) == 3 else preds[1] # second output is len 3 if pt, but only 1 if exported
- for i, pred in enumerate(p):
- orig_img = orig_imgs[i] if is_list else orig_imgs
- img_path = self.batch[0][i]
- if not len(pred): # save empty boxes
- masks = None
- elif self.args.retina_masks:
- if is_list:
- pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape)
- masks = ops.process_mask_native(proto[i], pred[:, 6:], pred[:, :4], orig_img.shape[:2]) # HWC
- else:
- masks = ops.process_mask(proto[i], pred[:, 6:], pred[:, :4], img.shape[2:], upsample=True) # HWC
- if is_list:
- pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape)
- results.append(Results(orig_img, path=img_path, names=self.model.names, boxes=pred[:, :6], masks=masks))
- return results
|