123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616 |
- # Ultralytics YOLO 🚀, AGPL-3.0 license
- # --------------------------------------------------------
- # TinyViT Model Architecture
- # Copyright (c) 2022 Microsoft
- # Adapted from LeViT and Swin Transformer
- # LeViT: (https://github.com/facebookresearch/levit)
- # Swin: (https://github.com/microsoft/swin-transformer)
- # Build the TinyViT Model
- # --------------------------------------------------------
- import itertools
- from typing import Tuple
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
- import torch.utils.checkpoint as checkpoint
- from ultralytics.utils.instance import to_2tuple
- class Conv2d_BN(torch.nn.Sequential):
- def __init__(self, a, b, ks=1, stride=1, pad=0, dilation=1, groups=1, bn_weight_init=1):
- super().__init__()
- self.add_module('c', torch.nn.Conv2d(a, b, ks, stride, pad, dilation, groups, bias=False))
- bn = torch.nn.BatchNorm2d(b)
- torch.nn.init.constant_(bn.weight, bn_weight_init)
- torch.nn.init.constant_(bn.bias, 0)
- self.add_module('bn', bn)
- @torch.no_grad()
- def fuse(self):
- c, bn = self._modules.values()
- w = bn.weight / (bn.running_var + bn.eps) ** 0.5
- w = c.weight * w[:, None, None, None]
- b = bn.bias - bn.running_mean * bn.weight / (bn.running_var + bn.eps) ** 0.5
- m = torch.nn.Conv2d(w.size(1) * self.c.groups,
- w.size(0),
- w.shape[2:],
- stride=self.c.stride,
- padding=self.c.padding,
- dilation=self.c.dilation,
- groups=self.c.groups)
- m.weight.data.copy_(w)
- m.bias.data.copy_(b)
- return m
- # NOTE: This module and timm package is needed only for training.
- # from ultralytics.utils.checks import check_requirements
- # check_requirements('timm')
- # from timm.models.layers import DropPath as TimmDropPath
- # from timm.models.layers import trunc_normal_
- # class DropPath(TimmDropPath):
- #
- # def __init__(self, drop_prob=None):
- # super().__init__(drop_prob=drop_prob)
- # self.drop_prob = drop_prob
- #
- # def __repr__(self):
- # msg = super().__repr__()
- # msg += f'(drop_prob={self.drop_prob})'
- # return msg
- class PatchEmbed(nn.Module):
- def __init__(self, in_chans, embed_dim, resolution, activation):
- super().__init__()
- img_size: Tuple[int, int] = to_2tuple(resolution)
- self.patches_resolution = (img_size[0] // 4, img_size[1] // 4)
- self.num_patches = self.patches_resolution[0] * self.patches_resolution[1]
- self.in_chans = in_chans
- self.embed_dim = embed_dim
- n = embed_dim
- self.seq = nn.Sequential(
- Conv2d_BN(in_chans, n // 2, 3, 2, 1),
- activation(),
- Conv2d_BN(n // 2, n, 3, 2, 1),
- )
- def forward(self, x):
- return self.seq(x)
- class MBConv(nn.Module):
- def __init__(self, in_chans, out_chans, expand_ratio, activation, drop_path):
- super().__init__()
- self.in_chans = in_chans
- self.hidden_chans = int(in_chans * expand_ratio)
- self.out_chans = out_chans
- self.conv1 = Conv2d_BN(in_chans, self.hidden_chans, ks=1)
- self.act1 = activation()
- self.conv2 = Conv2d_BN(self.hidden_chans, self.hidden_chans, ks=3, stride=1, pad=1, groups=self.hidden_chans)
- self.act2 = activation()
- self.conv3 = Conv2d_BN(self.hidden_chans, out_chans, ks=1, bn_weight_init=0.0)
- self.act3 = activation()
- # NOTE: `DropPath` is needed only for training.
- # self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
- self.drop_path = nn.Identity()
- def forward(self, x):
- shortcut = x
- x = self.conv1(x)
- x = self.act1(x)
- x = self.conv2(x)
- x = self.act2(x)
- x = self.conv3(x)
- x = self.drop_path(x)
- x += shortcut
- return self.act3(x)
- class PatchMerging(nn.Module):
- def __init__(self, input_resolution, dim, out_dim, activation):
- super().__init__()
- self.input_resolution = input_resolution
- self.dim = dim
- self.out_dim = out_dim
- self.act = activation()
- self.conv1 = Conv2d_BN(dim, out_dim, 1, 1, 0)
- stride_c = 1 if out_dim in [320, 448, 576] else 2
- self.conv2 = Conv2d_BN(out_dim, out_dim, 3, stride_c, 1, groups=out_dim)
- self.conv3 = Conv2d_BN(out_dim, out_dim, 1, 1, 0)
- def forward(self, x):
- if x.ndim == 3:
- H, W = self.input_resolution
- B = len(x)
- # (B, C, H, W)
- x = x.view(B, H, W, -1).permute(0, 3, 1, 2)
- x = self.conv1(x)
- x = self.act(x)
- x = self.conv2(x)
- x = self.act(x)
- x = self.conv3(x)
- return x.flatten(2).transpose(1, 2)
- class ConvLayer(nn.Module):
- def __init__(
- self,
- dim,
- input_resolution,
- depth,
- activation,
- drop_path=0.,
- downsample=None,
- use_checkpoint=False,
- out_dim=None,
- conv_expand_ratio=4.,
- ):
- super().__init__()
- self.dim = dim
- self.input_resolution = input_resolution
- self.depth = depth
- self.use_checkpoint = use_checkpoint
- # build blocks
- self.blocks = nn.ModuleList([
- MBConv(
- dim,
- dim,
- conv_expand_ratio,
- activation,
- drop_path[i] if isinstance(drop_path, list) else drop_path,
- ) for i in range(depth)])
- # patch merging layer
- self.downsample = None if downsample is None else downsample(
- input_resolution, dim=dim, out_dim=out_dim, activation=activation)
- def forward(self, x):
- for blk in self.blocks:
- x = checkpoint.checkpoint(blk, x) if self.use_checkpoint else blk(x)
- return x if self.downsample is None else self.downsample(x)
- class Mlp(nn.Module):
- def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
- super().__init__()
- out_features = out_features or in_features
- hidden_features = hidden_features or in_features
- self.norm = nn.LayerNorm(in_features)
- self.fc1 = nn.Linear(in_features, hidden_features)
- self.fc2 = nn.Linear(hidden_features, out_features)
- self.act = act_layer()
- self.drop = nn.Dropout(drop)
- def forward(self, x):
- x = self.norm(x)
- x = self.fc1(x)
- x = self.act(x)
- x = self.drop(x)
- x = self.fc2(x)
- return self.drop(x)
- class Attention(torch.nn.Module):
- def __init__(
- self,
- dim,
- key_dim,
- num_heads=8,
- attn_ratio=4,
- resolution=(14, 14),
- ):
- super().__init__()
- # (h, w)
- assert isinstance(resolution, tuple) and len(resolution) == 2
- self.num_heads = num_heads
- self.scale = key_dim ** -0.5
- self.key_dim = key_dim
- self.nh_kd = nh_kd = key_dim * num_heads
- self.d = int(attn_ratio * key_dim)
- self.dh = int(attn_ratio * key_dim) * num_heads
- self.attn_ratio = attn_ratio
- h = self.dh + nh_kd * 2
- self.norm = nn.LayerNorm(dim)
- self.qkv = nn.Linear(dim, h)
- self.proj = nn.Linear(self.dh, dim)
- points = list(itertools.product(range(resolution[0]), range(resolution[1])))
- N = len(points)
- attention_offsets = {}
- idxs = []
- for p1 in points:
- for p2 in points:
- offset = (abs(p1[0] - p2[0]), abs(p1[1] - p2[1]))
- if offset not in attention_offsets:
- attention_offsets[offset] = len(attention_offsets)
- idxs.append(attention_offsets[offset])
- self.attention_biases = torch.nn.Parameter(torch.zeros(num_heads, len(attention_offsets)))
- self.register_buffer('attention_bias_idxs', torch.LongTensor(idxs).view(N, N), persistent=False)
- @torch.no_grad()
- def train(self, mode=True):
- super().train(mode)
- if mode and hasattr(self, 'ab'):
- del self.ab
- else:
- self.ab = self.attention_biases[:, self.attention_bias_idxs]
- def forward(self, x): # x (B,N,C)
- B, N, _ = x.shape
- # Normalization
- x = self.norm(x)
- qkv = self.qkv(x)
- # (B, N, num_heads, d)
- q, k, v = qkv.view(B, N, self.num_heads, -1).split([self.key_dim, self.key_dim, self.d], dim=3)
- # (B, num_heads, N, d)
- q = q.permute(0, 2, 1, 3)
- k = k.permute(0, 2, 1, 3)
- v = v.permute(0, 2, 1, 3)
- self.ab = self.ab.to(self.attention_biases.device)
- attn = ((q @ k.transpose(-2, -1)) * self.scale +
- (self.attention_biases[:, self.attention_bias_idxs] if self.training else self.ab))
- attn = attn.softmax(dim=-1)
- x = (attn @ v).transpose(1, 2).reshape(B, N, self.dh)
- return self.proj(x)
- class TinyViTBlock(nn.Module):
- """
- TinyViT Block.
- Args:
- dim (int): Number of input channels.
- input_resolution (tuple[int, int]): Input resolution.
- num_heads (int): Number of attention heads.
- window_size (int): Window size.
- mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
- drop (float, optional): Dropout rate. Default: 0.0
- drop_path (float, optional): Stochastic depth rate. Default: 0.0
- local_conv_size (int): the kernel size of the convolution between Attention and MLP. Default: 3
- activation (torch.nn): the activation function. Default: nn.GELU
- """
- def __init__(
- self,
- dim,
- input_resolution,
- num_heads,
- window_size=7,
- mlp_ratio=4.,
- drop=0.,
- drop_path=0.,
- local_conv_size=3,
- activation=nn.GELU,
- ):
- super().__init__()
- self.dim = dim
- self.input_resolution = input_resolution
- self.num_heads = num_heads
- assert window_size > 0, 'window_size must be greater than 0'
- self.window_size = window_size
- self.mlp_ratio = mlp_ratio
- # NOTE: `DropPath` is needed only for training.
- # self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
- self.drop_path = nn.Identity()
- assert dim % num_heads == 0, 'dim must be divisible by num_heads'
- head_dim = dim // num_heads
- window_resolution = (window_size, window_size)
- self.attn = Attention(dim, head_dim, num_heads, attn_ratio=1, resolution=window_resolution)
- mlp_hidden_dim = int(dim * mlp_ratio)
- mlp_activation = activation
- self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=mlp_activation, drop=drop)
- pad = local_conv_size // 2
- self.local_conv = Conv2d_BN(dim, dim, ks=local_conv_size, stride=1, pad=pad, groups=dim)
- def forward(self, x):
- H, W = self.input_resolution
- B, L, C = x.shape
- assert L == H * W, 'input feature has wrong size'
- res_x = x
- if H == self.window_size and W == self.window_size:
- x = self.attn(x)
- else:
- x = x.view(B, H, W, C)
- pad_b = (self.window_size - H % self.window_size) % self.window_size
- pad_r = (self.window_size - W % self.window_size) % self.window_size
- padding = pad_b > 0 or pad_r > 0
- if padding:
- x = F.pad(x, (0, 0, 0, pad_r, 0, pad_b))
- pH, pW = H + pad_b, W + pad_r
- nH = pH // self.window_size
- nW = pW // self.window_size
- # window partition
- x = x.view(B, nH, self.window_size, nW, self.window_size,
- C).transpose(2, 3).reshape(B * nH * nW, self.window_size * self.window_size, C)
- x = self.attn(x)
- # window reverse
- x = x.view(B, nH, nW, self.window_size, self.window_size, C).transpose(2, 3).reshape(B, pH, pW, C)
- if padding:
- x = x[:, :H, :W].contiguous()
- x = x.view(B, L, C)
- x = res_x + self.drop_path(x)
- x = x.transpose(1, 2).reshape(B, C, H, W)
- x = self.local_conv(x)
- x = x.view(B, C, L).transpose(1, 2)
- return x + self.drop_path(self.mlp(x))
- def extra_repr(self) -> str:
- return f'dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, ' \
- f'window_size={self.window_size}, mlp_ratio={self.mlp_ratio}'
- class BasicLayer(nn.Module):
- """
- A basic TinyViT layer for one stage.
- Args:
- dim (int): Number of input channels.
- input_resolution (tuple[int]): Input resolution.
- depth (int): Number of blocks.
- num_heads (int): Number of attention heads.
- window_size (int): Local window size.
- mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
- drop (float, optional): Dropout rate. Default: 0.0
- drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
- downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
- use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
- local_conv_size (int): the kernel size of the depthwise convolution between attention and MLP. Default: 3
- activation (torch.nn): the activation function. Default: nn.GELU
- out_dim (int | optional): the output dimension of the layer. Default: None
- """
- def __init__(
- self,
- dim,
- input_resolution,
- depth,
- num_heads,
- window_size,
- mlp_ratio=4.,
- drop=0.,
- drop_path=0.,
- downsample=None,
- use_checkpoint=False,
- local_conv_size=3,
- activation=nn.GELU,
- out_dim=None,
- ):
- super().__init__()
- self.dim = dim
- self.input_resolution = input_resolution
- self.depth = depth
- self.use_checkpoint = use_checkpoint
- # build blocks
- self.blocks = nn.ModuleList([
- TinyViTBlock(
- dim=dim,
- input_resolution=input_resolution,
- num_heads=num_heads,
- window_size=window_size,
- mlp_ratio=mlp_ratio,
- drop=drop,
- drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
- local_conv_size=local_conv_size,
- activation=activation,
- ) for i in range(depth)])
- # patch merging layer
- self.downsample = None if downsample is None else downsample(
- input_resolution, dim=dim, out_dim=out_dim, activation=activation)
- def forward(self, x):
- for blk in self.blocks:
- x = checkpoint.checkpoint(blk, x) if self.use_checkpoint else blk(x)
- return x if self.downsample is None else self.downsample(x)
- def extra_repr(self) -> str:
- return f'dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}'
- class LayerNorm2d(nn.Module):
- def __init__(self, num_channels: int, eps: float = 1e-6) -> None:
- super().__init__()
- self.weight = nn.Parameter(torch.ones(num_channels))
- self.bias = nn.Parameter(torch.zeros(num_channels))
- self.eps = eps
- def forward(self, x: torch.Tensor) -> torch.Tensor:
- u = x.mean(1, keepdim=True)
- s = (x - u).pow(2).mean(1, keepdim=True)
- x = (x - u) / torch.sqrt(s + self.eps)
- return self.weight[:, None, None] * x + self.bias[:, None, None]
- class TinyViT(nn.Module):
- def __init__(
- self,
- img_size=224,
- in_chans=3,
- num_classes=1000,
- embed_dims=[96, 192, 384, 768],
- depths=[2, 2, 6, 2],
- num_heads=[3, 6, 12, 24],
- window_sizes=[7, 7, 14, 7],
- mlp_ratio=4.,
- drop_rate=0.,
- drop_path_rate=0.1,
- use_checkpoint=False,
- mbconv_expand_ratio=4.0,
- local_conv_size=3,
- layer_lr_decay=1.0,
- ):
- super().__init__()
- self.img_size = img_size
- self.num_classes = num_classes
- self.depths = depths
- self.num_layers = len(depths)
- self.mlp_ratio = mlp_ratio
- activation = nn.GELU
- self.patch_embed = PatchEmbed(in_chans=in_chans,
- embed_dim=embed_dims[0],
- resolution=img_size,
- activation=activation)
- patches_resolution = self.patch_embed.patches_resolution
- self.patches_resolution = patches_resolution
- # stochastic depth
- dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule
- # build layers
- self.layers = nn.ModuleList()
- for i_layer in range(self.num_layers):
- kwargs = dict(
- dim=embed_dims[i_layer],
- input_resolution=(patches_resolution[0] // (2 ** (i_layer - 1 if i_layer == 3 else i_layer)),
- patches_resolution[1] // (2 ** (i_layer - 1 if i_layer == 3 else i_layer))),
- # input_resolution=(patches_resolution[0] // (2 ** i_layer),
- # patches_resolution[1] // (2 ** i_layer)),
- depth=depths[i_layer],
- drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],
- downsample=PatchMerging if (i_layer < self.num_layers - 1) else None,
- use_checkpoint=use_checkpoint,
- out_dim=embed_dims[min(i_layer + 1,
- len(embed_dims) - 1)],
- activation=activation,
- )
- if i_layer == 0:
- layer = ConvLayer(conv_expand_ratio=mbconv_expand_ratio, **kwargs)
- else:
- layer = BasicLayer(num_heads=num_heads[i_layer],
- window_size=window_sizes[i_layer],
- mlp_ratio=self.mlp_ratio,
- drop=drop_rate,
- local_conv_size=local_conv_size,
- **kwargs)
- self.layers.append(layer)
- # Classifier head
- self.norm_head = nn.LayerNorm(embed_dims[-1])
- self.head = nn.Linear(embed_dims[-1], num_classes) if num_classes > 0 else torch.nn.Identity()
- # init weights
- self.apply(self._init_weights)
- self.set_layer_lr_decay(layer_lr_decay)
- self.neck = nn.Sequential(
- nn.Conv2d(
- embed_dims[-1],
- 256,
- kernel_size=1,
- bias=False,
- ),
- LayerNorm2d(256),
- nn.Conv2d(
- 256,
- 256,
- kernel_size=3,
- padding=1,
- bias=False,
- ),
- LayerNorm2d(256),
- )
- def set_layer_lr_decay(self, layer_lr_decay):
- decay_rate = layer_lr_decay
- # layers -> blocks (depth)
- depth = sum(self.depths)
- lr_scales = [decay_rate ** (depth - i - 1) for i in range(depth)]
- def _set_lr_scale(m, scale):
- for p in m.parameters():
- p.lr_scale = scale
- self.patch_embed.apply(lambda x: _set_lr_scale(x, lr_scales[0]))
- i = 0
- for layer in self.layers:
- for block in layer.blocks:
- block.apply(lambda x: _set_lr_scale(x, lr_scales[i]))
- i += 1
- if layer.downsample is not None:
- layer.downsample.apply(lambda x: _set_lr_scale(x, lr_scales[i - 1]))
- assert i == depth
- for m in [self.norm_head, self.head]:
- m.apply(lambda x: _set_lr_scale(x, lr_scales[-1]))
- for k, p in self.named_parameters():
- p.param_name = k
- def _check_lr_scale(m):
- for p in m.parameters():
- assert hasattr(p, 'lr_scale'), p.param_name
- self.apply(_check_lr_scale)
- def _init_weights(self, m):
- if isinstance(m, nn.Linear):
- # NOTE: This initialization is needed only for training.
- # trunc_normal_(m.weight, std=.02)
- if m.bias is not None:
- nn.init.constant_(m.bias, 0)
- elif isinstance(m, nn.LayerNorm):
- nn.init.constant_(m.bias, 0)
- nn.init.constant_(m.weight, 1.0)
- @torch.jit.ignore
- def no_weight_decay_keywords(self):
- return {'attention_biases'}
- def forward_features(self, x):
- # x: (N, C, H, W)
- x = self.patch_embed(x)
- x = self.layers[0](x)
- start_i = 1
- for i in range(start_i, len(self.layers)):
- layer = self.layers[i]
- x = layer(x)
- B, _, C = x.size()
- x = x.view(B, 64, 64, C)
- x = x.permute(0, 3, 1, 2)
- return self.neck(x)
- def forward(self, x):
- return self.forward_features(x)
|