123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567 |
- # Ultralytics YOLO 🚀, AGPL-3.0 license
- from typing import Any, Optional, Tuple, Type
- import numpy as np
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
- from ultralytics.nn.modules import LayerNorm2d, MLPBlock
- # This class and its supporting functions below lightly adapted from the ViTDet backbone available at: https://github.com/facebookresearch/detectron2/blob/main/detectron2/modeling/backbone/vit.py # noqa
- class ImageEncoderViT(nn.Module):
- def __init__(
- self,
- img_size: int = 1024,
- patch_size: int = 16,
- in_chans: int = 3,
- embed_dim: int = 768,
- depth: int = 12,
- num_heads: int = 12,
- mlp_ratio: float = 4.0,
- out_chans: int = 256,
- qkv_bias: bool = True,
- norm_layer: Type[nn.Module] = nn.LayerNorm,
- act_layer: Type[nn.Module] = nn.GELU,
- use_abs_pos: bool = True,
- use_rel_pos: bool = False,
- rel_pos_zero_init: bool = True,
- window_size: int = 0,
- global_attn_indexes: Tuple[int, ...] = (),
- ) -> None:
- """
- Args:
- img_size (int): Input image size.
- patch_size (int): Patch size.
- in_chans (int): Number of input image channels.
- embed_dim (int): Patch embedding dimension.
- depth (int): Depth of ViT.
- num_heads (int): Number of attention heads in each ViT block.
- mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
- qkv_bias (bool): If True, add a learnable bias to query, key, value.
- norm_layer (nn.Module): Normalization layer.
- act_layer (nn.Module): Activation layer.
- use_abs_pos (bool): If True, use absolute positional embeddings.
- use_rel_pos (bool): If True, add relative positional embeddings to the attention map.
- rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
- window_size (int): Window size for window attention blocks.
- global_attn_indexes (list): Indexes for blocks using global attention.
- """
- super().__init__()
- self.img_size = img_size
- self.patch_embed = PatchEmbed(
- kernel_size=(patch_size, patch_size),
- stride=(patch_size, patch_size),
- in_chans=in_chans,
- embed_dim=embed_dim,
- )
- self.pos_embed: Optional[nn.Parameter] = None
- if use_abs_pos:
- # Initialize absolute positional embedding with pretrain image size.
- self.pos_embed = nn.Parameter(torch.zeros(1, img_size // patch_size, img_size // patch_size, embed_dim))
- self.blocks = nn.ModuleList()
- for i in range(depth):
- block = Block(
- dim=embed_dim,
- num_heads=num_heads,
- mlp_ratio=mlp_ratio,
- qkv_bias=qkv_bias,
- norm_layer=norm_layer,
- act_layer=act_layer,
- use_rel_pos=use_rel_pos,
- rel_pos_zero_init=rel_pos_zero_init,
- window_size=window_size if i not in global_attn_indexes else 0,
- input_size=(img_size // patch_size, img_size // patch_size),
- )
- self.blocks.append(block)
- self.neck = nn.Sequential(
- nn.Conv2d(
- embed_dim,
- out_chans,
- kernel_size=1,
- bias=False,
- ),
- LayerNorm2d(out_chans),
- nn.Conv2d(
- out_chans,
- out_chans,
- kernel_size=3,
- padding=1,
- bias=False,
- ),
- LayerNorm2d(out_chans),
- )
- def forward(self, x: torch.Tensor) -> torch.Tensor:
- x = self.patch_embed(x)
- if self.pos_embed is not None:
- x = x + self.pos_embed
- for blk in self.blocks:
- x = blk(x)
- return self.neck(x.permute(0, 3, 1, 2))
- class PromptEncoder(nn.Module):
- def __init__(
- self,
- embed_dim: int,
- image_embedding_size: Tuple[int, int],
- input_image_size: Tuple[int, int],
- mask_in_chans: int,
- activation: Type[nn.Module] = nn.GELU,
- ) -> None:
- """
- Encodes prompts for input to SAM's mask decoder.
- Args:
- embed_dim (int): The prompts' embedding dimension
- image_embedding_size (tuple(int, int)): The spatial size of the
- image embedding, as (H, W).
- input_image_size (int): The padded size of the image as input
- to the image encoder, as (H, W).
- mask_in_chans (int): The number of hidden channels used for
- encoding input masks.
- activation (nn.Module): The activation to use when encoding
- input masks.
- """
- super().__init__()
- self.embed_dim = embed_dim
- self.input_image_size = input_image_size
- self.image_embedding_size = image_embedding_size
- self.pe_layer = PositionEmbeddingRandom(embed_dim // 2)
- self.num_point_embeddings: int = 4 # pos/neg point + 2 box corners
- point_embeddings = [nn.Embedding(1, embed_dim) for _ in range(self.num_point_embeddings)]
- self.point_embeddings = nn.ModuleList(point_embeddings)
- self.not_a_point_embed = nn.Embedding(1, embed_dim)
- self.mask_input_size = (4 * image_embedding_size[0], 4 * image_embedding_size[1])
- self.mask_downscaling = nn.Sequential(
- nn.Conv2d(1, mask_in_chans // 4, kernel_size=2, stride=2),
- LayerNorm2d(mask_in_chans // 4),
- activation(),
- nn.Conv2d(mask_in_chans // 4, mask_in_chans, kernel_size=2, stride=2),
- LayerNorm2d(mask_in_chans),
- activation(),
- nn.Conv2d(mask_in_chans, embed_dim, kernel_size=1),
- )
- self.no_mask_embed = nn.Embedding(1, embed_dim)
- def get_dense_pe(self) -> torch.Tensor:
- """
- Returns the positional encoding used to encode point prompts,
- applied to a dense set of points the shape of the image encoding.
- Returns:
- torch.Tensor: Positional encoding with shape 1x(embed_dim)x(embedding_h)x(embedding_w)
- """
- return self.pe_layer(self.image_embedding_size).unsqueeze(0)
- def _embed_points(
- self,
- points: torch.Tensor,
- labels: torch.Tensor,
- pad: bool,
- ) -> torch.Tensor:
- """Embeds point prompts."""
- points = points + 0.5 # Shift to center of pixel
- if pad:
- padding_point = torch.zeros((points.shape[0], 1, 2), device=points.device)
- padding_label = -torch.ones((labels.shape[0], 1), device=labels.device)
- points = torch.cat([points, padding_point], dim=1)
- labels = torch.cat([labels, padding_label], dim=1)
- point_embedding = self.pe_layer.forward_with_coords(points, self.input_image_size)
- point_embedding[labels == -1] = 0.0
- point_embedding[labels == -1] += self.not_a_point_embed.weight
- point_embedding[labels == 0] += self.point_embeddings[0].weight
- point_embedding[labels == 1] += self.point_embeddings[1].weight
- return point_embedding
- def _embed_boxes(self, boxes: torch.Tensor) -> torch.Tensor:
- """Embeds box prompts."""
- boxes = boxes + 0.5 # Shift to center of pixel
- coords = boxes.reshape(-1, 2, 2)
- corner_embedding = self.pe_layer.forward_with_coords(coords, self.input_image_size)
- corner_embedding[:, 0, :] += self.point_embeddings[2].weight
- corner_embedding[:, 1, :] += self.point_embeddings[3].weight
- return corner_embedding
- def _embed_masks(self, masks: torch.Tensor) -> torch.Tensor:
- """Embeds mask inputs."""
- return self.mask_downscaling(masks)
- def _get_batch_size(
- self,
- points: Optional[Tuple[torch.Tensor, torch.Tensor]],
- boxes: Optional[torch.Tensor],
- masks: Optional[torch.Tensor],
- ) -> int:
- """
- Gets the batch size of the output given the batch size of the input prompts.
- """
- if points is not None:
- return points[0].shape[0]
- elif boxes is not None:
- return boxes.shape[0]
- elif masks is not None:
- return masks.shape[0]
- else:
- return 1
- def _get_device(self) -> torch.device:
- return self.point_embeddings[0].weight.device
- def forward(
- self,
- points: Optional[Tuple[torch.Tensor, torch.Tensor]],
- boxes: Optional[torch.Tensor],
- masks: Optional[torch.Tensor],
- ) -> Tuple[torch.Tensor, torch.Tensor]:
- """
- Embeds different types of prompts, returning both sparse and dense embeddings.
- Args:
- points (tuple(torch.Tensor, torch.Tensor), None): point coordinates and labels to embed.
- boxes (torch.Tensor, None): boxes to embed
- masks (torch.Tensor, None): masks to embed
- Returns:
- torch.Tensor: sparse embeddings for the points and boxes, with shape BxNx(embed_dim), where N is determined
- by the number of input points and boxes.
- torch.Tensor: dense embeddings for the masks, in the shape Bx(embed_dim)x(embed_H)x(embed_W)
- """
- bs = self._get_batch_size(points, boxes, masks)
- sparse_embeddings = torch.empty((bs, 0, self.embed_dim), device=self._get_device())
- if points is not None:
- coords, labels = points
- point_embeddings = self._embed_points(coords, labels, pad=(boxes is None))
- sparse_embeddings = torch.cat([sparse_embeddings, point_embeddings], dim=1)
- if boxes is not None:
- box_embeddings = self._embed_boxes(boxes)
- sparse_embeddings = torch.cat([sparse_embeddings, box_embeddings], dim=1)
- if masks is not None:
- dense_embeddings = self._embed_masks(masks)
- else:
- dense_embeddings = self.no_mask_embed.weight.reshape(1, -1, 1,
- 1).expand(bs, -1, self.image_embedding_size[0],
- self.image_embedding_size[1])
- return sparse_embeddings, dense_embeddings
- class PositionEmbeddingRandom(nn.Module):
- """
- Positional encoding using random spatial frequencies.
- """
- def __init__(self, num_pos_feats: int = 64, scale: Optional[float] = None) -> None:
- super().__init__()
- if scale is None or scale <= 0.0:
- scale = 1.0
- self.register_buffer(
- 'positional_encoding_gaussian_matrix',
- scale * torch.randn((2, num_pos_feats)),
- )
- def _pe_encoding(self, coords: torch.Tensor) -> torch.Tensor:
- """Positionally encode points that are normalized to [0,1]."""
- # assuming coords are in [0, 1]^2 square and have d_1 x ... x d_n x 2 shape
- coords = 2 * coords - 1
- coords = coords @ self.positional_encoding_gaussian_matrix
- coords = 2 * np.pi * coords
- # outputs d_1 x ... x d_n x C shape
- return torch.cat([torch.sin(coords), torch.cos(coords)], dim=-1)
- def forward(self, size: Tuple[int, int]) -> torch.Tensor:
- """Generate positional encoding for a grid of the specified size."""
- h, w = size
- device: Any = self.positional_encoding_gaussian_matrix.device
- grid = torch.ones((h, w), device=device, dtype=torch.float32)
- y_embed = grid.cumsum(dim=0) - 0.5
- x_embed = grid.cumsum(dim=1) - 0.5
- y_embed = y_embed / h
- x_embed = x_embed / w
- pe = self._pe_encoding(torch.stack([x_embed, y_embed], dim=-1))
- return pe.permute(2, 0, 1) # C x H x W
- def forward_with_coords(self, coords_input: torch.Tensor, image_size: Tuple[int, int]) -> torch.Tensor:
- """Positionally encode points that are not normalized to [0,1]."""
- coords = coords_input.clone()
- coords[:, :, 0] = coords[:, :, 0] / image_size[1]
- coords[:, :, 1] = coords[:, :, 1] / image_size[0]
- return self._pe_encoding(coords.to(torch.float)) # B x N x C
- class Block(nn.Module):
- """Transformer blocks with support of window attention and residual propagation blocks"""
- def __init__(
- self,
- dim: int,
- num_heads: int,
- mlp_ratio: float = 4.0,
- qkv_bias: bool = True,
- norm_layer: Type[nn.Module] = nn.LayerNorm,
- act_layer: Type[nn.Module] = nn.GELU,
- use_rel_pos: bool = False,
- rel_pos_zero_init: bool = True,
- window_size: int = 0,
- input_size: Optional[Tuple[int, int]] = None,
- ) -> None:
- """
- Args:
- dim (int): Number of input channels.
- num_heads (int): Number of attention heads in each ViT block.
- mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
- qkv_bias (bool): If True, add a learnable bias to query, key, value.
- norm_layer (nn.Module): Normalization layer.
- act_layer (nn.Module): Activation layer.
- use_rel_pos (bool): If True, add relative positional embeddings to the attention map.
- rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
- window_size (int): Window size for window attention blocks. If it equals 0, then
- use global attention.
- input_size (tuple(int, int), None): Input resolution for calculating the relative
- positional parameter size.
- """
- super().__init__()
- self.norm1 = norm_layer(dim)
- self.attn = Attention(
- dim,
- num_heads=num_heads,
- qkv_bias=qkv_bias,
- use_rel_pos=use_rel_pos,
- rel_pos_zero_init=rel_pos_zero_init,
- input_size=input_size if window_size == 0 else (window_size, window_size),
- )
- self.norm2 = norm_layer(dim)
- self.mlp = MLPBlock(embedding_dim=dim, mlp_dim=int(dim * mlp_ratio), act=act_layer)
- self.window_size = window_size
- def forward(self, x: torch.Tensor) -> torch.Tensor:
- shortcut = x
- x = self.norm1(x)
- # Window partition
- if self.window_size > 0:
- H, W = x.shape[1], x.shape[2]
- x, pad_hw = window_partition(x, self.window_size)
- x = self.attn(x)
- # Reverse window partition
- if self.window_size > 0:
- x = window_unpartition(x, self.window_size, pad_hw, (H, W))
- x = shortcut + x
- return x + self.mlp(self.norm2(x))
- class Attention(nn.Module):
- """Multi-head Attention block with relative position embeddings."""
- def __init__(
- self,
- dim: int,
- num_heads: int = 8,
- qkv_bias: bool = True,
- use_rel_pos: bool = False,
- rel_pos_zero_init: bool = True,
- input_size: Optional[Tuple[int, int]] = None,
- ) -> None:
- """
- Args:
- dim (int): Number of input channels.
- num_heads (int): Number of attention heads.
- qkv_bias (bool): If True, add a learnable bias to query, key, value.
- rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
- input_size (tuple(int, int), None): Input resolution for calculating the relative
- positional parameter size.
- """
- super().__init__()
- self.num_heads = num_heads
- head_dim = dim // num_heads
- self.scale = head_dim ** -0.5
- self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
- self.proj = nn.Linear(dim, dim)
- self.use_rel_pos = use_rel_pos
- if self.use_rel_pos:
- assert (input_size is not None), 'Input size must be provided if using relative positional encoding.'
- # initialize relative positional embeddings
- self.rel_pos_h = nn.Parameter(torch.zeros(2 * input_size[0] - 1, head_dim))
- self.rel_pos_w = nn.Parameter(torch.zeros(2 * input_size[1] - 1, head_dim))
- def forward(self, x: torch.Tensor) -> torch.Tensor:
- B, H, W, _ = x.shape
- # qkv with shape (3, B, nHead, H * W, C)
- qkv = self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
- # q, k, v with shape (B * nHead, H * W, C)
- q, k, v = qkv.reshape(3, B * self.num_heads, H * W, -1).unbind(0)
- attn = (q * self.scale) @ k.transpose(-2, -1)
- if self.use_rel_pos:
- attn = add_decomposed_rel_pos(attn, q, self.rel_pos_h, self.rel_pos_w, (H, W), (H, W))
- attn = attn.softmax(dim=-1)
- x = (attn @ v).view(B, self.num_heads, H, W, -1).permute(0, 2, 3, 1, 4).reshape(B, H, W, -1)
- return self.proj(x)
- def window_partition(x: torch.Tensor, window_size: int) -> Tuple[torch.Tensor, Tuple[int, int]]:
- """
- Partition into non-overlapping windows with padding if needed.
- Args:
- x (tensor): input tokens with [B, H, W, C].
- window_size (int): window size.
- Returns:
- windows: windows after partition with [B * num_windows, window_size, window_size, C].
- (Hp, Wp): padded height and width before partition
- """
- B, H, W, C = x.shape
- pad_h = (window_size - H % window_size) % window_size
- pad_w = (window_size - W % window_size) % window_size
- if pad_h > 0 or pad_w > 0:
- x = F.pad(x, (0, 0, 0, pad_w, 0, pad_h))
- Hp, Wp = H + pad_h, W + pad_w
- x = x.view(B, Hp // window_size, window_size, Wp // window_size, window_size, C)
- windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
- return windows, (Hp, Wp)
- def window_unpartition(windows: torch.Tensor, window_size: int, pad_hw: Tuple[int, int],
- hw: Tuple[int, int]) -> torch.Tensor:
- """
- Window unpartition into original sequences and removing padding.
- Args:
- windows (tensor): input tokens with [B * num_windows, window_size, window_size, C].
- window_size (int): window size.
- pad_hw (Tuple): padded height and width (Hp, Wp).
- hw (Tuple): original height and width (H, W) before padding.
- Returns:
- x: unpartitioned sequences with [B, H, W, C].
- """
- Hp, Wp = pad_hw
- H, W = hw
- B = windows.shape[0] // (Hp * Wp // window_size // window_size)
- x = windows.view(B, Hp // window_size, Wp // window_size, window_size, window_size, -1)
- x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, Hp, Wp, -1)
- if Hp > H or Wp > W:
- x = x[:, :H, :W, :].contiguous()
- return x
- def get_rel_pos(q_size: int, k_size: int, rel_pos: torch.Tensor) -> torch.Tensor:
- """
- Get relative positional embeddings according to the relative positions of
- query and key sizes.
- Args:
- q_size (int): size of query q.
- k_size (int): size of key k.
- rel_pos (Tensor): relative position embeddings (L, C).
- Returns:
- Extracted positional embeddings according to relative positions.
- """
- max_rel_dist = int(2 * max(q_size, k_size) - 1)
- # Interpolate rel pos if needed.
- if rel_pos.shape[0] != max_rel_dist:
- # Interpolate rel pos.
- rel_pos_resized = F.interpolate(
- rel_pos.reshape(1, rel_pos.shape[0], -1).permute(0, 2, 1),
- size=max_rel_dist,
- mode='linear',
- )
- rel_pos_resized = rel_pos_resized.reshape(-1, max_rel_dist).permute(1, 0)
- else:
- rel_pos_resized = rel_pos
- # Scale the coords with short length if shapes for q and k are different.
- q_coords = torch.arange(q_size)[:, None] * max(k_size / q_size, 1.0)
- k_coords = torch.arange(k_size)[None, :] * max(q_size / k_size, 1.0)
- relative_coords = (q_coords - k_coords) + (k_size - 1) * max(q_size / k_size, 1.0)
- return rel_pos_resized[relative_coords.long()]
- def add_decomposed_rel_pos(
- attn: torch.Tensor,
- q: torch.Tensor,
- rel_pos_h: torch.Tensor,
- rel_pos_w: torch.Tensor,
- q_size: Tuple[int, int],
- k_size: Tuple[int, int],
- ) -> torch.Tensor:
- """
- Calculate decomposed Relative Positional Embeddings from :paper:`mvitv2`.
- https://github.com/facebookresearch/mvit/blob/19786631e330df9f3622e5402b4a419a263a2c80/mvit/models/attention.py # noqa B950
- Args:
- attn (Tensor): attention map.
- q (Tensor): query q in the attention layer with shape (B, q_h * q_w, C).
- rel_pos_h (Tensor): relative position embeddings (Lh, C) for height axis.
- rel_pos_w (Tensor): relative position embeddings (Lw, C) for width axis.
- q_size (Tuple): spatial sequence size of query q with (q_h, q_w).
- k_size (Tuple): spatial sequence size of key k with (k_h, k_w).
- Returns:
- attn (Tensor): attention map with added relative positional embeddings.
- """
- q_h, q_w = q_size
- k_h, k_w = k_size
- Rh = get_rel_pos(q_h, k_h, rel_pos_h)
- Rw = get_rel_pos(q_w, k_w, rel_pos_w)
- B, _, dim = q.shape
- r_q = q.reshape(B, q_h, q_w, dim)
- rel_h = torch.einsum('bhwc,hkc->bhwk', r_q, Rh)
- rel_w = torch.einsum('bhwc,wkc->bhwk', r_q, Rw)
- attn = (attn.view(B, q_h, q_w, k_h, k_w) + rel_h[:, :, :, :, None] + rel_w[:, :, :, None, :]).view(
- B, q_h * q_w, k_h * k_w)
- return attn
- class PatchEmbed(nn.Module):
- """
- Image to Patch Embedding.
- """
- def __init__(
- self,
- kernel_size: Tuple[int, int] = (16, 16),
- stride: Tuple[int, int] = (16, 16),
- padding: Tuple[int, int] = (0, 0),
- in_chans: int = 3,
- embed_dim: int = 768,
- ) -> None:
- """
- Args:
- kernel_size (Tuple): kernel size of the projection layer.
- stride (Tuple): stride of the projection layer.
- padding (Tuple): padding size of the projection layer.
- in_chans (int): Number of input image channels.
- embed_dim (int): Patch embedding dimension.
- """
- super().__init__()
- self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding)
- def forward(self, x: torch.Tensor) -> torch.Tensor:
- return self.proj(x).permute(0, 2, 3, 1) # B C H W -> B H W C
|