decoders.py 6.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159
  1. # Ultralytics YOLO 🚀, AGPL-3.0 license
  2. from typing import List, Tuple, Type
  3. import torch
  4. from torch import nn
  5. from torch.nn import functional as F
  6. from ultralytics.nn.modules import LayerNorm2d
  7. class MaskDecoder(nn.Module):
  8. def __init__(
  9. self,
  10. *,
  11. transformer_dim: int,
  12. transformer: nn.Module,
  13. num_multimask_outputs: int = 3,
  14. activation: Type[nn.Module] = nn.GELU,
  15. iou_head_depth: int = 3,
  16. iou_head_hidden_dim: int = 256,
  17. ) -> None:
  18. """
  19. Predicts masks given an image and prompt embeddings, using a transformer architecture.
  20. Args:
  21. transformer_dim (int): the channel dimension of the transformer module
  22. transformer (nn.Module): the transformer used to predict masks
  23. num_multimask_outputs (int): the number of masks to predict when disambiguating masks
  24. activation (nn.Module): the type of activation to use when upscaling masks
  25. iou_head_depth (int): the depth of the MLP used to predict mask quality
  26. iou_head_hidden_dim (int): the hidden dimension of the MLP used to predict mask quality
  27. """
  28. super().__init__()
  29. self.transformer_dim = transformer_dim
  30. self.transformer = transformer
  31. self.num_multimask_outputs = num_multimask_outputs
  32. self.iou_token = nn.Embedding(1, transformer_dim)
  33. self.num_mask_tokens = num_multimask_outputs + 1
  34. self.mask_tokens = nn.Embedding(self.num_mask_tokens, transformer_dim)
  35. self.output_upscaling = nn.Sequential(
  36. nn.ConvTranspose2d(transformer_dim, transformer_dim // 4, kernel_size=2, stride=2),
  37. LayerNorm2d(transformer_dim // 4),
  38. activation(),
  39. nn.ConvTranspose2d(transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2),
  40. activation(),
  41. )
  42. self.output_hypernetworks_mlps = nn.ModuleList([
  43. MLP(transformer_dim, transformer_dim, transformer_dim // 8, 3) for _ in range(self.num_mask_tokens)])
  44. self.iou_prediction_head = MLP(transformer_dim, iou_head_hidden_dim, self.num_mask_tokens, iou_head_depth)
  45. def forward(
  46. self,
  47. image_embeddings: torch.Tensor,
  48. image_pe: torch.Tensor,
  49. sparse_prompt_embeddings: torch.Tensor,
  50. dense_prompt_embeddings: torch.Tensor,
  51. multimask_output: bool,
  52. ) -> Tuple[torch.Tensor, torch.Tensor]:
  53. """
  54. Predict masks given image and prompt embeddings.
  55. Args:
  56. image_embeddings (torch.Tensor): the embeddings from the image encoder
  57. image_pe (torch.Tensor): positional encoding with the shape of image_embeddings
  58. sparse_prompt_embeddings (torch.Tensor): the embeddings of the points and boxes
  59. dense_prompt_embeddings (torch.Tensor): the embeddings of the mask inputs
  60. multimask_output (bool): Whether to return multiple masks or a single mask.
  61. Returns:
  62. torch.Tensor: batched predicted masks
  63. torch.Tensor: batched predictions of mask quality
  64. """
  65. masks, iou_pred = self.predict_masks(
  66. image_embeddings=image_embeddings,
  67. image_pe=image_pe,
  68. sparse_prompt_embeddings=sparse_prompt_embeddings,
  69. dense_prompt_embeddings=dense_prompt_embeddings,
  70. )
  71. # Select the correct mask or masks for output
  72. mask_slice = slice(1, None) if multimask_output else slice(0, 1)
  73. masks = masks[:, mask_slice, :, :]
  74. iou_pred = iou_pred[:, mask_slice]
  75. # Prepare output
  76. return masks, iou_pred
  77. def predict_masks(
  78. self,
  79. image_embeddings: torch.Tensor,
  80. image_pe: torch.Tensor,
  81. sparse_prompt_embeddings: torch.Tensor,
  82. dense_prompt_embeddings: torch.Tensor,
  83. ) -> Tuple[torch.Tensor, torch.Tensor]:
  84. """Predicts masks. See 'forward' for more details."""
  85. # Concatenate output tokens
  86. output_tokens = torch.cat([self.iou_token.weight, self.mask_tokens.weight], dim=0)
  87. output_tokens = output_tokens.unsqueeze(0).expand(sparse_prompt_embeddings.size(0), -1, -1)
  88. tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=1)
  89. # Expand per-image data in batch direction to be per-mask
  90. src = torch.repeat_interleave(image_embeddings, tokens.shape[0], dim=0)
  91. src = src + dense_prompt_embeddings
  92. pos_src = torch.repeat_interleave(image_pe, tokens.shape[0], dim=0)
  93. b, c, h, w = src.shape
  94. # Run the transformer
  95. hs, src = self.transformer(src, pos_src, tokens)
  96. iou_token_out = hs[:, 0, :]
  97. mask_tokens_out = hs[:, 1:(1 + self.num_mask_tokens), :]
  98. # Upscale mask embeddings and predict masks using the mask tokens
  99. src = src.transpose(1, 2).view(b, c, h, w)
  100. upscaled_embedding = self.output_upscaling(src)
  101. hyper_in_list: List[torch.Tensor] = [
  102. self.output_hypernetworks_mlps[i](mask_tokens_out[:, i, :]) for i in range(self.num_mask_tokens)]
  103. hyper_in = torch.stack(hyper_in_list, dim=1)
  104. b, c, h, w = upscaled_embedding.shape
  105. masks = (hyper_in @ upscaled_embedding.view(b, c, h * w)).view(b, -1, h, w)
  106. # Generate mask quality predictions
  107. iou_pred = self.iou_prediction_head(iou_token_out)
  108. return masks, iou_pred
  109. class MLP(nn.Module):
  110. """
  111. Lightly adapted from
  112. https://github.com/facebookresearch/MaskFormer/blob/main/mask_former/modeling/transformer/transformer_predictor.py
  113. """
  114. def __init__(
  115. self,
  116. input_dim: int,
  117. hidden_dim: int,
  118. output_dim: int,
  119. num_layers: int,
  120. sigmoid_output: bool = False,
  121. ) -> None:
  122. super().__init__()
  123. self.num_layers = num_layers
  124. h = [hidden_dim] * (num_layers - 1)
  125. self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]))
  126. self.sigmoid_output = sigmoid_output
  127. def forward(self, x):
  128. """Executes feedforward within the neural network module and applies activation."""
  129. for i, layer in enumerate(self.layers):
  130. x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
  131. if self.sigmoid_output:
  132. x = torch.sigmoid(x)
  133. return x