amg.py 7.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180
  1. # Ultralytics YOLO 🚀, AGPL-3.0 license
  2. import math
  3. from itertools import product
  4. from typing import Any, Generator, List, Tuple
  5. import numpy as np
  6. import torch
  7. def is_box_near_crop_edge(boxes: torch.Tensor,
  8. crop_box: List[int],
  9. orig_box: List[int],
  10. atol: float = 20.0) -> torch.Tensor:
  11. """Return a boolean tensor indicating if boxes are near the crop edge."""
  12. crop_box_torch = torch.as_tensor(crop_box, dtype=torch.float, device=boxes.device)
  13. orig_box_torch = torch.as_tensor(orig_box, dtype=torch.float, device=boxes.device)
  14. boxes = uncrop_boxes_xyxy(boxes, crop_box).float()
  15. near_crop_edge = torch.isclose(boxes, crop_box_torch[None, :], atol=atol, rtol=0)
  16. near_image_edge = torch.isclose(boxes, orig_box_torch[None, :], atol=atol, rtol=0)
  17. near_crop_edge = torch.logical_and(near_crop_edge, ~near_image_edge)
  18. return torch.any(near_crop_edge, dim=1)
  19. def batch_iterator(batch_size: int, *args) -> Generator[List[Any], None, None]:
  20. """Yield batches of data from the input arguments."""
  21. assert args and all(len(a) == len(args[0]) for a in args), 'Batched iteration must have same-size inputs.'
  22. n_batches = len(args[0]) // batch_size + int(len(args[0]) % batch_size != 0)
  23. for b in range(n_batches):
  24. yield [arg[b * batch_size:(b + 1) * batch_size] for arg in args]
  25. def calculate_stability_score(masks: torch.Tensor, mask_threshold: float, threshold_offset: float) -> torch.Tensor:
  26. """
  27. Computes the stability score for a batch of masks. The stability
  28. score is the IoU between the binary masks obtained by thresholding
  29. the predicted mask logits at high and low values.
  30. """
  31. # One mask is always contained inside the other.
  32. # Save memory by preventing unnecessary cast to torch.int64
  33. intersections = ((masks > (mask_threshold + threshold_offset)).sum(-1, dtype=torch.int16).sum(-1,
  34. dtype=torch.int32))
  35. unions = ((masks > (mask_threshold - threshold_offset)).sum(-1, dtype=torch.int16).sum(-1, dtype=torch.int32))
  36. return intersections / unions
  37. def build_point_grid(n_per_side: int) -> np.ndarray:
  38. """Generate a 2D grid of evenly spaced points in the range [0,1]x[0,1]."""
  39. offset = 1 / (2 * n_per_side)
  40. points_one_side = np.linspace(offset, 1 - offset, n_per_side)
  41. points_x = np.tile(points_one_side[None, :], (n_per_side, 1))
  42. points_y = np.tile(points_one_side[:, None], (1, n_per_side))
  43. return np.stack([points_x, points_y], axis=-1).reshape(-1, 2)
  44. def build_all_layer_point_grids(n_per_side: int, n_layers: int, scale_per_layer: int) -> List[np.ndarray]:
  45. """Generate point grids for all crop layers."""
  46. return [build_point_grid(int(n_per_side / (scale_per_layer ** i))) for i in range(n_layers + 1)]
  47. def generate_crop_boxes(im_size: Tuple[int, ...], n_layers: int,
  48. overlap_ratio: float) -> Tuple[List[List[int]], List[int]]:
  49. """Generates a list of crop boxes of different sizes. Each layer has (2**i)**2 boxes for the ith layer."""
  50. crop_boxes, layer_idxs = [], []
  51. im_h, im_w = im_size
  52. short_side = min(im_h, im_w)
  53. # Original image
  54. crop_boxes.append([0, 0, im_w, im_h])
  55. layer_idxs.append(0)
  56. def crop_len(orig_len, n_crops, overlap):
  57. """Crops bounding boxes to the size of the input image."""
  58. return int(math.ceil((overlap * (n_crops - 1) + orig_len) / n_crops))
  59. for i_layer in range(n_layers):
  60. n_crops_per_side = 2 ** (i_layer + 1)
  61. overlap = int(overlap_ratio * short_side * (2 / n_crops_per_side))
  62. crop_w = crop_len(im_w, n_crops_per_side, overlap)
  63. crop_h = crop_len(im_h, n_crops_per_side, overlap)
  64. crop_box_x0 = [int((crop_w - overlap) * i) for i in range(n_crops_per_side)]
  65. crop_box_y0 = [int((crop_h - overlap) * i) for i in range(n_crops_per_side)]
  66. # Crops in XYWH format
  67. for x0, y0 in product(crop_box_x0, crop_box_y0):
  68. box = [x0, y0, min(x0 + crop_w, im_w), min(y0 + crop_h, im_h)]
  69. crop_boxes.append(box)
  70. layer_idxs.append(i_layer + 1)
  71. return crop_boxes, layer_idxs
  72. def uncrop_boxes_xyxy(boxes: torch.Tensor, crop_box: List[int]) -> torch.Tensor:
  73. """Uncrop bounding boxes by adding the crop box offset."""
  74. x0, y0, _, _ = crop_box
  75. offset = torch.tensor([[x0, y0, x0, y0]], device=boxes.device)
  76. # Check if boxes has a channel dimension
  77. if len(boxes.shape) == 3:
  78. offset = offset.unsqueeze(1)
  79. return boxes + offset
  80. def uncrop_points(points: torch.Tensor, crop_box: List[int]) -> torch.Tensor:
  81. """Uncrop points by adding the crop box offset."""
  82. x0, y0, _, _ = crop_box
  83. offset = torch.tensor([[x0, y0]], device=points.device)
  84. # Check if points has a channel dimension
  85. if len(points.shape) == 3:
  86. offset = offset.unsqueeze(1)
  87. return points + offset
  88. def uncrop_masks(masks: torch.Tensor, crop_box: List[int], orig_h: int, orig_w: int) -> torch.Tensor:
  89. """Uncrop masks by padding them to the original image size."""
  90. x0, y0, x1, y1 = crop_box
  91. if x0 == 0 and y0 == 0 and x1 == orig_w and y1 == orig_h:
  92. return masks
  93. # Coordinate transform masks
  94. pad_x, pad_y = orig_w - (x1 - x0), orig_h - (y1 - y0)
  95. pad = (x0, pad_x - x0, y0, pad_y - y0)
  96. return torch.nn.functional.pad(masks, pad, value=0)
  97. def remove_small_regions(mask: np.ndarray, area_thresh: float, mode: str) -> Tuple[np.ndarray, bool]:
  98. """Remove small disconnected regions or holes in a mask, returning the mask and a modification indicator."""
  99. import cv2 # type: ignore
  100. assert mode in {'holes', 'islands'}
  101. correct_holes = mode == 'holes'
  102. working_mask = (correct_holes ^ mask).astype(np.uint8)
  103. n_labels, regions, stats, _ = cv2.connectedComponentsWithStats(working_mask, 8)
  104. sizes = stats[:, -1][1:] # Row 0 is background label
  105. small_regions = [i + 1 for i, s in enumerate(sizes) if s < area_thresh]
  106. if not small_regions:
  107. return mask, False
  108. fill_labels = [0] + small_regions
  109. if not correct_holes:
  110. # If every region is below threshold, keep largest
  111. fill_labels = [i for i in range(n_labels) if i not in fill_labels] or [int(np.argmax(sizes)) + 1]
  112. mask = np.isin(regions, fill_labels)
  113. return mask, True
  114. def batched_mask_to_box(masks: torch.Tensor) -> torch.Tensor:
  115. """
  116. Calculates boxes in XYXY format around masks. Return [0,0,0,0] for
  117. an empty mask. For input shape C1xC2x...xHxW, the output shape is C1xC2x...x4.
  118. """
  119. # torch.max below raises an error on empty inputs, just skip in this case
  120. if torch.numel(masks) == 0:
  121. return torch.zeros(*masks.shape[:-2], 4, device=masks.device)
  122. # Normalize shape to CxHxW
  123. shape = masks.shape
  124. h, w = shape[-2:]
  125. masks = masks.flatten(0, -3) if len(shape) > 2 else masks.unsqueeze(0)
  126. # Get top and bottom edges
  127. in_height, _ = torch.max(masks, dim=-1)
  128. in_height_coords = in_height * torch.arange(h, device=in_height.device)[None, :]
  129. bottom_edges, _ = torch.max(in_height_coords, dim=-1)
  130. in_height_coords = in_height_coords + h * (~in_height)
  131. top_edges, _ = torch.min(in_height_coords, dim=-1)
  132. # Get left and right edges
  133. in_width, _ = torch.max(masks, dim=-2)
  134. in_width_coords = in_width * torch.arange(w, device=in_width.device)[None, :]
  135. right_edges, _ = torch.max(in_width_coords, dim=-1)
  136. in_width_coords = in_width_coords + w * (~in_width)
  137. left_edges, _ = torch.min(in_width_coords, dim=-1)
  138. # If the mask is empty the right edge will be to the left of the left edge.
  139. # Replace these boxes with [0, 0, 0, 0]
  140. empty_filter = (right_edges < left_edges) | (bottom_edges < top_edges)
  141. out = torch.stack([left_edges, top_edges, right_edges, bottom_edges], dim=-1)
  142. out = out * (~empty_filter).unsqueeze(-1)
  143. # Return to original shape
  144. return out.reshape(*shape[:-2], 4) if len(shape) > 2 else out[0]