123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164 |
- # Ultralytics YOLO 🚀, AGPL-3.0 license
- from pathlib import Path
- import cv2
- import numpy as np
- import torch
- from ultralytics.data import YOLODataset
- from ultralytics.data.augment import Compose, Format, v8_transforms
- from ultralytics.models.yolo.detect import DetectionValidator
- from ultralytics.utils import colorstr, ops
- __all__ = 'RTDETRValidator', # tuple or list
- # TODO: Temporarily RT-DETR does not need padding.
- class RTDETRDataset(YOLODataset):
- def __init__(self, *args, data=None, **kwargs):
- super().__init__(*args, data=data, use_segments=False, use_keypoints=False, **kwargs)
- # NOTE: add stretch version load_image for rtdetr mosaic
- def load_image(self, i):
- """Loads 1 image from dataset index 'i', returns (im, resized hw)."""
- im, f, fn = self.ims[i], self.im_files[i], self.npy_files[i]
- if im is None: # not cached in RAM
- if fn.exists(): # load npy
- im = np.load(fn)
- else: # read image
- im = cv2.imread(f) # BGR
- if im is None:
- raise FileNotFoundError(f'Image Not Found {f}')
- h0, w0 = im.shape[:2] # orig hw
- im = cv2.resize(im, (self.imgsz, self.imgsz), interpolation=cv2.INTER_LINEAR)
- # Add to buffer if training with augmentations
- if self.augment:
- self.ims[i], self.im_hw0[i], self.im_hw[i] = im, (h0, w0), im.shape[:2] # im, hw_original, hw_resized
- self.buffer.append(i)
- if len(self.buffer) >= self.max_buffer_length:
- j = self.buffer.pop(0)
- self.ims[j], self.im_hw0[j], self.im_hw[j] = None, None, None
- return im, (h0, w0), im.shape[:2]
- return self.ims[i], self.im_hw0[i], self.im_hw[i]
- def build_transforms(self, hyp=None):
- """Temporary, only for evaluation."""
- if self.augment:
- hyp.mosaic = hyp.mosaic if self.augment and not self.rect else 0.0
- hyp.mixup = hyp.mixup if self.augment and not self.rect else 0.0
- transforms = v8_transforms(self, self.imgsz, hyp, stretch=True)
- else:
- # transforms = Compose([LetterBox(new_shape=(self.imgsz, self.imgsz), auto=False, scaleFill=True)])
- transforms = Compose([])
- transforms.append(
- Format(bbox_format='xywh',
- normalize=True,
- return_mask=self.use_segments,
- return_keypoint=self.use_keypoints,
- batch_idx=True,
- mask_ratio=hyp.mask_ratio,
- mask_overlap=hyp.overlap_mask))
- return transforms
- class RTDETRValidator(DetectionValidator):
- """
- A class extending the DetectionValidator class for validation based on an RT-DETR detection model.
- Example:
- ```python
- from ultralytics.models.rtdetr import RTDETRValidator
- args = dict(model='rtdetr-l.pt', data='coco8.yaml')
- validator = RTDETRValidator(args=args)
- validator()
- ```
- """
- def build_dataset(self, img_path, mode='val', batch=None):
- """
- Build an RTDETR Dataset.
- Args:
- img_path (str): Path to the folder containing images.
- mode (str): `train` mode or `val` mode, users are able to customize different augmentations for each mode.
- batch (int, optional): Size of batches, this is for `rect`. Defaults to None.
- """
- return RTDETRDataset(
- img_path=img_path,
- imgsz=self.args.imgsz,
- batch_size=batch,
- augment=False, # no augmentation
- hyp=self.args,
- rect=False, # no rect
- cache=self.args.cache or None,
- prefix=colorstr(f'{mode}: '),
- data=self.data)
- def postprocess(self, preds):
- """Apply Non-maximum suppression to prediction outputs."""
- bs, _, nd = preds[0].shape
- bboxes, scores = preds[0].split((4, nd - 4), dim=-1)
- bboxes *= self.args.imgsz
- outputs = [torch.zeros((0, 6), device=bboxes.device)] * bs
- for i, bbox in enumerate(bboxes): # (300, 4)
- bbox = ops.xywh2xyxy(bbox)
- score, cls = scores[i].max(-1) # (300, )
- # Do not need threshold for evaluation as only got 300 boxes here.
- # idx = score > self.args.conf
- pred = torch.cat([bbox, score[..., None], cls[..., None]], dim=-1) # filter
- # sort by confidence to correctly get internal metrics.
- pred = pred[score.argsort(descending=True)]
- outputs[i] = pred # [idx]
- return outputs
- def update_metrics(self, preds, batch):
- """Metrics."""
- for si, pred in enumerate(preds):
- idx = batch['batch_idx'] == si
- cls = batch['cls'][idx]
- bbox = batch['bboxes'][idx]
- nl, npr = cls.shape[0], pred.shape[0] # number of labels, predictions
- shape = batch['ori_shape'][si]
- correct_bboxes = torch.zeros(npr, self.niou, dtype=torch.bool, device=self.device) # init
- self.seen += 1
- if npr == 0:
- if nl:
- self.stats.append((correct_bboxes, *torch.zeros((2, 0), device=self.device), cls.squeeze(-1)))
- if self.args.plots:
- self.confusion_matrix.process_batch(detections=None, labels=cls.squeeze(-1))
- continue
- # Predictions
- if self.args.single_cls:
- pred[:, 5] = 0
- predn = pred.clone()
- predn[..., [0, 2]] *= shape[1] / self.args.imgsz # native-space pred
- predn[..., [1, 3]] *= shape[0] / self.args.imgsz # native-space pred
- # Evaluate
- if nl:
- tbox = ops.xywh2xyxy(bbox) # target boxes
- tbox[..., [0, 2]] *= shape[1] # native-space pred
- tbox[..., [1, 3]] *= shape[0] # native-space pred
- labelsn = torch.cat((cls, tbox), 1) # native-space labels
- # NOTE: To get correct metrics, the inputs of `_process_batch` should always be float32 type.
- correct_bboxes = self._process_batch(predn.float(), labelsn)
- # TODO: maybe remove these `self.` arguments as they already are member variable
- if self.args.plots:
- self.confusion_matrix.process_batch(predn, labelsn)
- self.stats.append((correct_bboxes, pred[:, 4], pred[:, 5], cls.squeeze(-1))) # (conf, pcls, tcls)
- # Save
- if self.args.save_json:
- self.pred_to_json(predn, batch['im_file'][si])
- if self.args.save_txt:
- file = self.save_dir / 'labels' / f'{Path(batch["im_file"][si]).stem}.txt'
- self.save_one_txt(predn, self.args.save_conf, shape, file)
|