1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859 |
- # Ultralytics YOLO 🚀, AGPL-3.0 license
- import torch
- from ultralytics.data.augment import LetterBox
- from ultralytics.engine.predictor import BasePredictor
- from ultralytics.engine.results import Results
- from ultralytics.utils import ops
- class RTDETRPredictor(BasePredictor):
- """
- A class extending the BasePredictor class for prediction based on an RT-DETR detection model.
- Example:
- ```python
- from ultralytics.utils import ASSETS
- from ultralytics.models.rtdetr import RTDETRPredictor
- args = dict(model='rtdetr-l.pt', source=ASSETS)
- predictor = RTDETRPredictor(overrides=args)
- predictor.predict_cli()
- ```
- """
- def postprocess(self, preds, img, orig_imgs):
- """Postprocess predictions and returns a list of Results objects."""
- nd = preds[0].shape[-1]
- bboxes, scores = preds[0].split((4, nd - 4), dim=-1)
- results = []
- is_list = isinstance(orig_imgs, list) # input images are a list, not a torch.Tensor
- for i, bbox in enumerate(bboxes): # (300, 4)
- bbox = ops.xywh2xyxy(bbox)
- score, cls = scores[i].max(-1, keepdim=True) # (300, 1)
- idx = score.squeeze(-1) > self.args.conf # (300, )
- if self.args.classes is not None:
- idx = (cls == torch.tensor(self.args.classes, device=cls.device)).any(1) & idx
- pred = torch.cat([bbox, score, cls], dim=-1)[idx] # filter
- orig_img = orig_imgs[i] if is_list else orig_imgs
- oh, ow = orig_img.shape[:2]
- if is_list:
- pred[..., [0, 2]] *= ow
- pred[..., [1, 3]] *= oh
- img_path = self.batch[0][i]
- results.append(Results(orig_img, path=img_path, names=self.model.names, boxes=pred))
- return results
- def pre_transform(self, im):
- """Pre-transform input image before inference.
- Args:
- im (List(np.ndarray)): (N, 3, h, w) for tensor, [(h, w, 3) x N] for list.
- Notes: The size must be square(640) and scaleFilled.
- Returns:
- (list): A list of transformed imgs.
- """
- return [LetterBox(self.imgsz, auto=False, scaleFill=True)(image=x) for x in im]
|