| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950 | # Ultralytics YOLO 🚀, AGPL-3.0 licenseimport torchfrom ultralytics.engine.results import Resultsfrom ultralytics.models.fastsam.utils import bbox_ioufrom ultralytics.models.yolo.detect.predict import DetectionPredictorfrom ultralytics.utils import DEFAULT_CFG, opsclass FastSAMPredictor(DetectionPredictor):    def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):        super().__init__(cfg, overrides, _callbacks)        self.args.task = 'segment'    def postprocess(self, preds, img, orig_imgs):        p = ops.non_max_suppression(preds[0],                                    self.args.conf,                                    self.args.iou,                                    agnostic=self.args.agnostic_nms,                                    max_det=self.args.max_det,                                    nc=len(self.model.names),                                    classes=self.args.classes)        full_box = torch.zeros_like(p[0][0])        full_box[2], full_box[3], full_box[4], full_box[6:] = img.shape[3], img.shape[2], 1.0, 1.0        full_box = full_box.view(1, -1)        critical_iou_index = bbox_iou(full_box[0][:4], p[0][:, :4], iou_thres=0.9, image_shape=img.shape[2:])        if critical_iou_index.numel() != 0:            full_box[0][4] = p[0][critical_iou_index][:, 4]            full_box[0][6:] = p[0][critical_iou_index][:, 6:]            p[0][critical_iou_index] = full_box        results = []        is_list = isinstance(orig_imgs, list)  # input images are a list, not a torch.Tensor        proto = preds[1][-1] if len(preds[1]) == 3 else preds[1]  # second output is len 3 if pt, but only 1 if exported        for i, pred in enumerate(p):            orig_img = orig_imgs[i] if is_list else orig_imgs            img_path = self.batch[0][i]            if not len(pred):  # save empty boxes                masks = None            elif self.args.retina_masks:                if is_list:                    pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape)                masks = ops.process_mask_native(proto[i], pred[:, 6:], pred[:, :4], orig_img.shape[:2])  # HWC            else:                masks = ops.process_mask(proto[i], pred[:, 6:], pred[:, :4], img.shape[2:], upsample=True)  # HWC                if is_list:                    pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape)            results.append(Results(orig_img, path=img_path, names=self.model.names, boxes=pred[:, :6], masks=masks))        return results
 |