123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982 |
- # Ultralytics YOLO 🚀, AGPL-3.0 license
- """
- Export a YOLOv8 PyTorch model to other formats. TensorFlow exports authored by https://github.com/zldrobit
- Format | `format=argument` | Model
- --- | --- | ---
- PyTorch | - | yolov8n.pt
- TorchScript | `torchscript` | yolov8n.torchscript
- ONNX | `onnx` | yolov8n.onnx
- OpenVINO | `openvino` | yolov8n_openvino_model/
- TensorRT | `engine` | yolov8n.engine
- CoreML | `coreml` | yolov8n.mlpackage
- TensorFlow SavedModel | `saved_model` | yolov8n_saved_model/
- TensorFlow GraphDef | `pb` | yolov8n.pb
- TensorFlow Lite | `tflite` | yolov8n.tflite
- TensorFlow Edge TPU | `edgetpu` | yolov8n_edgetpu.tflite
- TensorFlow.js | `tfjs` | yolov8n_web_model/
- PaddlePaddle | `paddle` | yolov8n_paddle_model/
- ncnn | `ncnn` | yolov8n_ncnn_model/
- Requirements:
- $ pip install "ultralytics[export]"
- Python:
- from ultralytics import YOLO
- model = YOLO('yolov8n.pt')
- results = model.export(format='onnx')
- CLI:
- $ yolo mode=export model=yolov8n.pt format=onnx
- Inference:
- $ yolo predict model=yolov8n.pt # PyTorch
- yolov8n.torchscript # TorchScript
- yolov8n.onnx # ONNX Runtime or OpenCV DNN with dnn=True
- yolov8n_openvino_model # OpenVINO
- yolov8n.engine # TensorRT
- yolov8n.mlpackage # CoreML (macOS-only)
- yolov8n_saved_model # TensorFlow SavedModel
- yolov8n.pb # TensorFlow GraphDef
- yolov8n.tflite # TensorFlow Lite
- yolov8n_edgetpu.tflite # TensorFlow Edge TPU
- yolov8n_paddle_model # PaddlePaddle
- TensorFlow.js:
- $ cd .. && git clone https://github.com/zldrobit/tfjs-yolov5-example.git && cd tfjs-yolov5-example
- $ npm install
- $ ln -s ../../yolov5/yolov8n_web_model public/yolov8n_web_model
- $ npm start
- """
- import json
- import os
- import shutil
- import subprocess
- import time
- import warnings
- from copy import deepcopy
- from datetime import datetime
- from pathlib import Path
- import torch
- from ultralytics.cfg import get_cfg
- from ultralytics.nn.autobackend import check_class_names
- from ultralytics.nn.modules import C2f, Detect, RTDETRDecoder
- from ultralytics.nn.tasks import DetectionModel, SegmentationModel
- from ultralytics.utils import (ARM64, DEFAULT_CFG, LINUX, LOGGER, MACOS, ROOT, WINDOWS, __version__, callbacks,
- colorstr, get_default_args, yaml_save)
- from ultralytics.utils.checks import check_imgsz, check_requirements, check_version
- from ultralytics.utils.downloads import attempt_download_asset, get_github_assets
- from ultralytics.utils.files import file_size, spaces_in_path
- from ultralytics.utils.ops import Profile
- from ultralytics.utils.torch_utils import get_latest_opset, select_device, smart_inference_mode
- def export_formats():
- """YOLOv8 export formats."""
- import pandas
- x = [
- ['PyTorch', '-', '.pt', True, True],
- ['TorchScript', 'torchscript', '.torchscript', True, True],
- ['ONNX', 'onnx', '.onnx', True, True],
- ['OpenVINO', 'openvino', '_openvino_model', True, False],
- ['TensorRT', 'engine', '.engine', False, True],
- ['CoreML', 'coreml', '.mlpackage', True, False],
- ['TensorFlow SavedModel', 'saved_model', '_saved_model', True, True],
- ['TensorFlow GraphDef', 'pb', '.pb', True, True],
- ['TensorFlow Lite', 'tflite', '.tflite', True, False],
- ['TensorFlow Edge TPU', 'edgetpu', '_edgetpu.tflite', True, False],
- ['TensorFlow.js', 'tfjs', '_web_model', True, False],
- ['PaddlePaddle', 'paddle', '_paddle_model', True, True],
- ['ncnn', 'ncnn', '_ncnn_model', True, True], ]
- return pandas.DataFrame(x, columns=['Format', 'Argument', 'Suffix', 'CPU', 'GPU'])
- def gd_outputs(gd):
- """TensorFlow GraphDef model output node names."""
- name_list, input_list = [], []
- for node in gd.node: # tensorflow.core.framework.node_def_pb2.NodeDef
- name_list.append(node.name)
- input_list.extend(node.input)
- return sorted(f'{x}:0' for x in list(set(name_list) - set(input_list)) if not x.startswith('NoOp'))
- def try_export(inner_func):
- """YOLOv8 export decorator, i..e @try_export."""
- inner_args = get_default_args(inner_func)
- def outer_func(*args, **kwargs):
- """Export a model."""
- prefix = inner_args['prefix']
- try:
- with Profile() as dt:
- f, model = inner_func(*args, **kwargs)
- LOGGER.info(f"{prefix} export success ✅ {dt.t:.1f}s, saved as '{f}' ({file_size(f):.1f} MB)")
- return f, model
- except Exception as e:
- LOGGER.info(f'{prefix} export failure ❌ {dt.t:.1f}s: {e}')
- raise e
- return outer_func
- class Exporter:
- """
- A class for exporting a model.
- Attributes:
- args (SimpleNamespace): Configuration for the exporter.
- callbacks (list, optional): List of callback functions. Defaults to None.
- """
- def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
- """
- Initializes the Exporter class.
- Args:
- cfg (str, optional): Path to a configuration file. Defaults to DEFAULT_CFG.
- overrides (dict, optional): Configuration overrides. Defaults to None.
- _callbacks (list, optional): List of callback functions. Defaults to None.
- """
- self.args = get_cfg(cfg, overrides)
- self.callbacks = _callbacks or callbacks.get_default_callbacks()
- callbacks.add_integration_callbacks(self)
- @smart_inference_mode()
- def __call__(self, model=None):
- """Returns list of exported files/dirs after running callbacks."""
- self.run_callbacks('on_export_start')
- t = time.time()
- format = self.args.format.lower() # to lowercase
- if format in ('tensorrt', 'trt'): # 'engine' aliases
- format = 'engine'
- if format in ('mlmodel', 'mlpackage', 'mlprogram', 'apple', 'ios'): # 'coreml' aliases
- format = 'coreml'
- fmts = tuple(export_formats()['Argument'][1:]) # available export formats
- flags = [x == format for x in fmts]
- if sum(flags) != 1:
- raise ValueError(f"Invalid export format='{format}'. Valid formats are {fmts}")
- jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle, ncnn = flags # export booleans
- # Load PyTorch model
- self.device = select_device('cpu' if self.args.device is None else self.args.device)
- # Checks
- model.names = check_class_names(model.names)
- if self.args.half and onnx and self.device.type == 'cpu':
- LOGGER.warning('WARNING ⚠️ half=True only compatible with GPU export, i.e. use device=0')
- self.args.half = False
- assert not self.args.dynamic, 'half=True not compatible with dynamic=True, i.e. use only one.'
- self.imgsz = check_imgsz(self.args.imgsz, stride=model.stride, min_dim=2) # check image size
- if self.args.optimize:
- assert not ncnn, "optimize=True not compatible with format='ncnn', i.e. use optimize=False"
- assert self.device.type == 'cpu', "optimize=True not compatible with cuda devices, i.e. use device='cpu'"
- if edgetpu and not LINUX:
- raise SystemError('Edge TPU export only supported on Linux. See https://coral.ai/docs/edgetpu/compiler/')
- # Input
- im = torch.zeros(self.args.batch, 3, *self.imgsz).to(self.device)
- file = Path(
- getattr(model, 'pt_path', None) or getattr(model, 'yaml_file', None) or model.yaml.get('yaml_file', ''))
- if file.suffix in ('.yaml', '.yml'):
- file = Path(file.name)
- # Update model
- model = deepcopy(model).to(self.device)
- for p in model.parameters():
- p.requires_grad = False
- model.eval()
- model.float()
- model = model.fuse()
- for m in model.modules():
- if isinstance(m, (Detect, RTDETRDecoder)): # Segment and Pose use Detect base class
- m.dynamic = self.args.dynamic
- m.export = True
- m.format = self.args.format
- elif isinstance(m, C2f) and not any((saved_model, pb, tflite, edgetpu, tfjs)):
- # EdgeTPU does not support FlexSplitV while split provides cleaner ONNX graph
- m.forward = m.forward_split
- y = None
- for _ in range(2):
- y = model(im) # dry runs
- if self.args.half and (engine or onnx) and self.device.type != 'cpu':
- im, model = im.half(), model.half() # to FP16
- # Filter warnings
- warnings.filterwarnings('ignore', category=torch.jit.TracerWarning) # suppress TracerWarning
- warnings.filterwarnings('ignore', category=UserWarning) # suppress shape prim::Constant missing ONNX warning
- warnings.filterwarnings('ignore', category=DeprecationWarning) # suppress CoreML np.bool deprecation warning
- # Assign
- self.im = im
- self.model = model
- self.file = file
- self.output_shape = tuple(y.shape) if isinstance(y, torch.Tensor) else \
- tuple(tuple(x.shape if isinstance(x, torch.Tensor) else []) for x in y)
- self.pretty_name = Path(self.model.yaml.get('yaml_file', self.file)).stem.replace('yolo', 'YOLO')
- data = model.args['data'] if hasattr(model, 'args') and isinstance(model.args, dict) else ''
- description = f'Ultralytics {self.pretty_name} model {f"trained on {data}" if data else ""}'
- self.metadata = {
- 'description': description,
- 'author': 'Ultralytics',
- 'license': 'AGPL-3.0 https://ultralytics.com/license',
- 'date': datetime.now().isoformat(),
- 'version': __version__,
- 'stride': int(max(model.stride)),
- 'task': model.task,
- 'batch': self.args.batch,
- 'imgsz': self.imgsz,
- 'names': model.names} # model metadata
- if model.task == 'pose':
- self.metadata['kpt_shape'] = model.model[-1].kpt_shape
- LOGGER.info(f"\n{colorstr('PyTorch:')} starting from '{file}' with input shape {tuple(im.shape)} BCHW and "
- f'output shape(s) {self.output_shape} ({file_size(file):.1f} MB)')
- # Exports
- f = [''] * len(fmts) # exported filenames
- if jit or ncnn: # TorchScript
- f[0], _ = self.export_torchscript()
- if engine: # TensorRT required before ONNX
- f[1], _ = self.export_engine()
- if onnx or xml: # OpenVINO requires ONNX
- f[2], _ = self.export_onnx()
- if xml: # OpenVINO
- f[3], _ = self.export_openvino()
- if coreml: # CoreML
- f[4], _ = self.export_coreml()
- if any((saved_model, pb, tflite, edgetpu, tfjs)): # TensorFlow formats
- self.args.int8 |= edgetpu
- f[5], keras_model = self.export_saved_model()
- if pb or tfjs: # pb prerequisite to tfjs
- f[6], _ = self.export_pb(keras_model=keras_model)
- if tflite:
- f[7], _ = self.export_tflite(keras_model=keras_model, nms=False, agnostic_nms=self.args.agnostic_nms)
- if edgetpu:
- f[8], _ = self.export_edgetpu(tflite_model=Path(f[5]) / f'{self.file.stem}_full_integer_quant.tflite')
- if tfjs:
- f[9], _ = self.export_tfjs()
- if paddle: # PaddlePaddle
- f[10], _ = self.export_paddle()
- if ncnn: # ncnn
- f[11], _ = self.export_ncnn()
- # Finish
- f = [str(x) for x in f if x] # filter out '' and None
- if any(f):
- f = str(Path(f[-1]))
- square = self.imgsz[0] == self.imgsz[1]
- s = '' if square else f"WARNING ⚠️ non-PyTorch val requires square images, 'imgsz={self.imgsz}' will not " \
- f"work. Use export 'imgsz={max(self.imgsz)}' if val is required."
- imgsz = self.imgsz[0] if square else str(self.imgsz)[1:-1].replace(' ', '')
- predict_data = f'data={data}' if model.task == 'segment' and format == 'pb' else ''
- LOGGER.info(f'\nExport complete ({time.time() - t:.1f}s)'
- f"\nResults saved to {colorstr('bold', file.parent.resolve())}"
- f'\nPredict: yolo predict task={model.task} model={f} imgsz={imgsz} {predict_data}'
- f'\nValidate: yolo val task={model.task} model={f} imgsz={imgsz} data={data} {s}'
- f'\nVisualize: https://netron.app')
- self.run_callbacks('on_export_end')
- return f # return list of exported files/dirs
- @try_export
- def export_torchscript(self, prefix=colorstr('TorchScript:')):
- """YOLOv8 TorchScript model export."""
- LOGGER.info(f'\n{prefix} starting export with torch {torch.__version__}...')
- f = self.file.with_suffix('.torchscript')
- ts = torch.jit.trace(self.model, self.im, strict=False)
- extra_files = {'config.txt': json.dumps(self.metadata)} # torch._C.ExtraFilesMap()
- if self.args.optimize: # https://pytorch.org/tutorials/recipes/mobile_interpreter.html
- LOGGER.info(f'{prefix} optimizing for mobile...')
- from torch.utils.mobile_optimizer import optimize_for_mobile
- optimize_for_mobile(ts)._save_for_lite_interpreter(str(f), _extra_files=extra_files)
- else:
- ts.save(str(f), _extra_files=extra_files)
- return f, None
- @try_export
- def export_onnx(self, prefix=colorstr('ONNX:')):
- """YOLOv8 ONNX export."""
- requirements = ['onnx>=1.12.0']
- if self.args.simplify:
- requirements += ['onnxsim>=0.4.33', 'onnxruntime-gpu' if torch.cuda.is_available() else 'onnxruntime']
- check_requirements(requirements)
- import onnx # noqa
- opset_version = self.args.opset or get_latest_opset()
- LOGGER.info(f'\n{prefix} starting export with onnx {onnx.__version__} opset {opset_version}...')
- f = str(self.file.with_suffix('.onnx'))
- output_names = ['output0', 'output1'] if isinstance(self.model, SegmentationModel) else ['output0']
- dynamic = self.args.dynamic
- if dynamic:
- dynamic = {'images': {0: 'batch', 2: 'height', 3: 'width'}} # shape(1,3,640,640)
- if isinstance(self.model, SegmentationModel):
- dynamic['output0'] = {0: 'batch', 2: 'anchors'} # shape(1, 116, 8400)
- dynamic['output1'] = {0: 'batch', 2: 'mask_height', 3: 'mask_width'} # shape(1,32,160,160)
- elif isinstance(self.model, DetectionModel):
- dynamic['output0'] = {0: 'batch', 2: 'anchors'} # shape(1, 84, 8400)
- torch.onnx.export(
- self.model.cpu() if dynamic else self.model, # dynamic=True only compatible with cpu
- self.im.cpu() if dynamic else self.im,
- f,
- verbose=False,
- opset_version=opset_version,
- do_constant_folding=True, # WARNING: DNN inference with torch>=1.12 may require do_constant_folding=False
- input_names=['images'],
- output_names=output_names,
- dynamic_axes=dynamic or None)
- # Checks
- model_onnx = onnx.load(f) # load onnx model
- # onnx.checker.check_model(model_onnx) # check onnx model
- # Simplify
- if self.args.simplify:
- try:
- import onnxsim
- LOGGER.info(f'{prefix} simplifying with onnxsim {onnxsim.__version__}...')
- # subprocess.run(f'onnxsim "{f}" "{f}"', shell=True)
- model_onnx, check = onnxsim.simplify(model_onnx)
- assert check, 'Simplified ONNX model could not be validated'
- except Exception as e:
- LOGGER.info(f'{prefix} simplifier failure: {e}')
- # Metadata
- for k, v in self.metadata.items():
- meta = model_onnx.metadata_props.add()
- meta.key, meta.value = k, str(v)
- onnx.save(model_onnx, f)
- return f, model_onnx
- @try_export
- def export_openvino(self, prefix=colorstr('OpenVINO:')):
- """YOLOv8 OpenVINO export."""
- check_requirements('openvino-dev>=2023.0') # requires openvino-dev: https://pypi.org/project/openvino-dev/
- import openvino.runtime as ov # noqa
- from openvino.tools import mo # noqa
- LOGGER.info(f'\n{prefix} starting export with openvino {ov.__version__}...')
- f = str(self.file).replace(self.file.suffix, f'_openvino_model{os.sep}')
- f_onnx = self.file.with_suffix('.onnx')
- f_ov = str(Path(f) / self.file.with_suffix('.xml').name)
- ov_model = mo.convert_model(f_onnx,
- model_name=self.pretty_name,
- framework='onnx',
- compress_to_fp16=self.args.half) # export
- # Set RT info
- ov_model.set_rt_info('YOLOv8', ['model_info', 'model_type'])
- ov_model.set_rt_info(True, ['model_info', 'reverse_input_channels'])
- ov_model.set_rt_info(114, ['model_info', 'pad_value'])
- ov_model.set_rt_info([255.0], ['model_info', 'scale_values'])
- ov_model.set_rt_info(self.args.iou, ['model_info', 'iou_threshold'])
- ov_model.set_rt_info([v.replace(' ', '_') for k, v in sorted(self.model.names.items())],
- ['model_info', 'labels'])
- if self.model.task != 'classify':
- ov_model.set_rt_info('fit_to_window_letterbox', ['model_info', 'resize_type'])
- ov.serialize(ov_model, f_ov) # save
- yaml_save(Path(f) / 'metadata.yaml', self.metadata) # add metadata.yaml
- return f, None
- @try_export
- def export_paddle(self, prefix=colorstr('PaddlePaddle:')):
- """YOLOv8 Paddle export."""
- check_requirements(('paddlepaddle', 'x2paddle'))
- import x2paddle # noqa
- from x2paddle.convert import pytorch2paddle # noqa
- LOGGER.info(f'\n{prefix} starting export with X2Paddle {x2paddle.__version__}...')
- f = str(self.file).replace(self.file.suffix, f'_paddle_model{os.sep}')
- pytorch2paddle(module=self.model, save_dir=f, jit_type='trace', input_examples=[self.im]) # export
- yaml_save(Path(f) / 'metadata.yaml', self.metadata) # add metadata.yaml
- return f, None
- @try_export
- def export_ncnn(self, prefix=colorstr('ncnn:')):
- """
- YOLOv8 ncnn export using PNNX https://github.com/pnnx/pnnx.
- """
- check_requirements('git+https://github.com/Tencent/ncnn.git' if ARM64 else 'ncnn') # requires ncnn
- import ncnn # noqa
- LOGGER.info(f'\n{prefix} starting export with ncnn {ncnn.__version__}...')
- f = Path(str(self.file).replace(self.file.suffix, f'_ncnn_model{os.sep}'))
- f_ts = self.file.with_suffix('.torchscript')
- pnnx_filename = 'pnnx.exe' if WINDOWS else 'pnnx'
- if Path(pnnx_filename).is_file():
- pnnx = pnnx_filename
- elif (ROOT / pnnx_filename).is_file():
- pnnx = ROOT / pnnx_filename
- else:
- LOGGER.warning(
- f'{prefix} WARNING ⚠️ PNNX not found. Attempting to download binary file from '
- 'https://github.com/pnnx/pnnx/.\nNote PNNX Binary file must be placed in current working directory '
- f'or in {ROOT}. See PNNX repo for full installation instructions.')
- _, assets = get_github_assets(repo='pnnx/pnnx', retry=True)
- system = 'macos' if MACOS else 'ubuntu' if LINUX else 'windows' # operating system
- asset = [x for x in assets if system in x][0] if assets else \
- f'https://github.com/pnnx/pnnx/releases/download/20230816/pnnx-20230816-{system}.zip' # fallback
- asset = attempt_download_asset(asset, repo='pnnx/pnnx', release='latest')
- unzip_dir = Path(asset).with_suffix('')
- pnnx = ROOT / pnnx_filename # new location
- (unzip_dir / pnnx_filename).rename(pnnx) # move binary to ROOT
- shutil.rmtree(unzip_dir) # delete unzip dir
- Path(asset).unlink() # delete zip
- pnnx.chmod(0o777) # set read, write, and execute permissions for everyone
- use_ncnn = True
- ncnn_args = [
- f'ncnnparam={f / "model.ncnn.param"}',
- f'ncnnbin={f / "model.ncnn.bin"}',
- f'ncnnpy={f / "model_ncnn.py"}', ] if use_ncnn else []
- use_pnnx = False
- pnnx_args = [
- f'pnnxparam={f / "model.pnnx.param"}',
- f'pnnxbin={f / "model.pnnx.bin"}',
- f'pnnxpy={f / "model_pnnx.py"}',
- f'pnnxonnx={f / "model.pnnx.onnx"}', ] if use_pnnx else []
- cmd = [
- str(pnnx),
- str(f_ts),
- *ncnn_args,
- *pnnx_args,
- f'fp16={int(self.args.half)}',
- f'device={self.device.type}',
- f'inputshape="{[self.args.batch, 3, *self.imgsz]}"', ]
- f.mkdir(exist_ok=True) # make ncnn_model directory
- LOGGER.info(f"{prefix} running '{' '.join(cmd)}'")
- subprocess.run(cmd, check=True)
- for f_debug in 'debug.bin', 'debug.param', 'debug2.bin', 'debug2.param': # remove debug files
- Path(f_debug).unlink(missing_ok=True)
- yaml_save(f / 'metadata.yaml', self.metadata) # add metadata.yaml
- return str(f), None
- @try_export
- def export_coreml(self, prefix=colorstr('CoreML:')):
- """YOLOv8 CoreML export."""
- mlmodel = self.args.format.lower() == 'mlmodel' # legacy *.mlmodel export format requested
- check_requirements('coremltools>=6.0,<=6.2' if mlmodel else 'coremltools>=7.0.b1')
- import coremltools as ct # noqa
- LOGGER.info(f'\n{prefix} starting export with coremltools {ct.__version__}...')
- f = self.file.with_suffix('.mlmodel' if mlmodel else '.mlpackage')
- if f.is_dir():
- shutil.rmtree(f)
- bias = [0.0, 0.0, 0.0]
- scale = 1 / 255
- classifier_config = None
- if self.model.task == 'classify':
- classifier_config = ct.ClassifierConfig(list(self.model.names.values())) if self.args.nms else None
- model = self.model
- elif self.model.task == 'detect':
- model = IOSDetectModel(self.model, self.im) if self.args.nms else self.model
- else:
- if self.args.nms:
- LOGGER.warning(f"{prefix} WARNING ⚠️ 'nms=True' is only available for Detect models like 'yolov8n.pt'.")
- # TODO CoreML Segment and Pose model pipelining
- model = self.model
- ts = torch.jit.trace(model.eval(), self.im, strict=False) # TorchScript model
- ct_model = ct.convert(ts,
- inputs=[ct.ImageType('image', shape=self.im.shape, scale=scale, bias=bias)],
- classifier_config=classifier_config,
- convert_to='neuralnetwork' if mlmodel else 'mlprogram')
- bits, mode = (8, 'kmeans') if self.args.int8 else (16, 'linear') if self.args.half else (32, None)
- if bits < 32:
- if 'kmeans' in mode:
- check_requirements('scikit-learn') # scikit-learn package required for k-means quantization
- if mlmodel:
- ct_model = ct.models.neural_network.quantization_utils.quantize_weights(ct_model, bits, mode)
- elif bits == 8: # mlprogram already quantized to FP16
- import coremltools.optimize.coreml as cto
- op_config = cto.OpPalettizerConfig(mode='kmeans', nbits=bits, weight_threshold=512)
- config = cto.OptimizationConfig(global_config=op_config)
- ct_model = cto.palettize_weights(ct_model, config=config)
- if self.args.nms and self.model.task == 'detect':
- if mlmodel:
- import platform
- # coremltools<=6.2 NMS export requires Python<3.11
- check_version(platform.python_version(), '<3.11', name='Python ', hard=True)
- weights_dir = None
- else:
- ct_model.save(str(f)) # save otherwise weights_dir does not exist
- weights_dir = str(f / 'Data/com.apple.CoreML/weights')
- ct_model = self._pipeline_coreml(ct_model, weights_dir=weights_dir)
- m = self.metadata # metadata dict
- ct_model.short_description = m.pop('description')
- ct_model.author = m.pop('author')
- ct_model.license = m.pop('license')
- ct_model.version = m.pop('version')
- ct_model.user_defined_metadata.update({k: str(v) for k, v in m.items()})
- try:
- ct_model.save(str(f)) # save *.mlpackage
- except Exception as e:
- LOGGER.warning(
- f'{prefix} WARNING ⚠️ CoreML export to *.mlpackage failed ({e}), reverting to *.mlmodel export. '
- f'Known coremltools Python 3.11 and Windows bugs https://github.com/apple/coremltools/issues/1928.')
- f = f.with_suffix('.mlmodel')
- ct_model.save(str(f))
- return f, ct_model
- @try_export
- def export_engine(self, prefix=colorstr('TensorRT:')):
- """YOLOv8 TensorRT export https://developer.nvidia.com/tensorrt."""
- assert self.im.device.type != 'cpu', "export running on CPU but must be on GPU, i.e. use 'device=0'"
- try:
- import tensorrt as trt # noqa
- except ImportError:
- if LINUX:
- check_requirements('nvidia-tensorrt', cmds='-U --index-url https://pypi.ngc.nvidia.com')
- import tensorrt as trt # noqa
- check_version(trt.__version__, '7.0.0', hard=True) # require tensorrt>=7.0.0
- self.args.simplify = True
- f_onnx, _ = self.export_onnx()
- LOGGER.info(f'\n{prefix} starting export with TensorRT {trt.__version__}...')
- assert Path(f_onnx).exists(), f'failed to export ONNX file: {f_onnx}'
- f = self.file.with_suffix('.engine') # TensorRT engine file
- logger = trt.Logger(trt.Logger.INFO)
- if self.args.verbose:
- logger.min_severity = trt.Logger.Severity.VERBOSE
- builder = trt.Builder(logger)
- config = builder.create_builder_config()
- config.max_workspace_size = self.args.workspace * 1 << 30
- # config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, workspace << 30) # fix TRT 8.4 deprecation notice
- flag = (1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH))
- network = builder.create_network(flag)
- parser = trt.OnnxParser(network, logger)
- if not parser.parse_from_file(f_onnx):
- raise RuntimeError(f'failed to load ONNX file: {f_onnx}')
- inputs = [network.get_input(i) for i in range(network.num_inputs)]
- outputs = [network.get_output(i) for i in range(network.num_outputs)]
- for inp in inputs:
- LOGGER.info(f'{prefix} input "{inp.name}" with shape{inp.shape} {inp.dtype}')
- for out in outputs:
- LOGGER.info(f'{prefix} output "{out.name}" with shape{out.shape} {out.dtype}')
- if self.args.dynamic:
- shape = self.im.shape
- if shape[0] <= 1:
- LOGGER.warning(f"{prefix} WARNING ⚠️ 'dynamic=True' model requires max batch size, i.e. 'batch=16'")
- profile = builder.create_optimization_profile()
- for inp in inputs:
- profile.set_shape(inp.name, (1, *shape[1:]), (max(1, shape[0] // 2), *shape[1:]), shape)
- config.add_optimization_profile(profile)
- LOGGER.info(
- f'{prefix} building FP{16 if builder.platform_has_fast_fp16 and self.args.half else 32} engine as {f}')
- if builder.platform_has_fast_fp16 and self.args.half:
- config.set_flag(trt.BuilderFlag.FP16)
- # Write file
- with builder.build_engine(network, config) as engine, open(f, 'wb') as t:
- # Metadata
- meta = json.dumps(self.metadata)
- t.write(len(meta).to_bytes(4, byteorder='little', signed=True))
- t.write(meta.encode())
- # Model
- t.write(engine.serialize())
- return f, None
- @try_export
- def export_saved_model(self, prefix=colorstr('TensorFlow SavedModel:')):
- """YOLOv8 TensorFlow SavedModel export."""
- cuda = torch.cuda.is_available()
- try:
- import tensorflow as tf # noqa
- except ImportError:
- check_requirements(f"tensorflow{'-macos' if MACOS else '-aarch64' if ARM64 else '' if cuda else '-cpu'}")
- import tensorflow as tf # noqa
- check_requirements(
- ('onnx', 'onnx2tf>=1.15.4', 'sng4onnx>=1.0.1', 'onnxsim>=0.4.33', 'onnx_graphsurgeon>=0.3.26',
- 'tflite_support', 'onnxruntime-gpu' if cuda else 'onnxruntime'),
- cmds='--extra-index-url https://pypi.ngc.nvidia.com') # onnx_graphsurgeon only on NVIDIA
- LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...')
- f = Path(str(self.file).replace(self.file.suffix, '_saved_model'))
- if f.is_dir():
- import shutil
- shutil.rmtree(f) # delete output folder
- # Export to ONNX
- self.args.simplify = True
- f_onnx, _ = self.export_onnx()
- # Export to TF
- tmp_file = f / 'tmp_tflite_int8_calibration_images.npy' # int8 calibration images file
- if self.args.int8:
- verbosity = '--verbosity info'
- if self.args.data:
- import numpy as np
- from ultralytics.data.dataset import YOLODataset
- from ultralytics.data.utils import check_det_dataset
- # Generate calibration data for integer quantization
- LOGGER.info(f"{prefix} collecting INT8 calibration images from 'data={self.args.data}'")
- data = check_det_dataset(self.args.data)
- dataset = YOLODataset(data['val'], data=data, imgsz=self.imgsz[0], augment=False)
- images = []
- n_images = 100 # maximum number of images
- for n, batch in enumerate(dataset):
- if n >= n_images:
- break
- im = batch['img'].permute(1, 2, 0)[None] # list to nparray, CHW to BHWC
- images.append(im)
- f.mkdir()
- images = torch.cat(images, 0).float()
- # mean = images.view(-1, 3).mean(0) # imagenet mean [123.675, 116.28, 103.53]
- # std = images.view(-1, 3).std(0) # imagenet std [58.395, 57.12, 57.375]
- np.save(str(tmp_file), images.numpy()) # BHWC
- int8 = f'-oiqt -qt per-tensor -cind images "{tmp_file}" "[[[[0, 0, 0]]]]" "[[[[255, 255, 255]]]]"'
- else:
- int8 = '-oiqt -qt per-tensor'
- else:
- verbosity = '--non_verbose'
- int8 = ''
- cmd = f'onnx2tf -i "{f_onnx}" -o "{f}" -nuo {verbosity} {int8}'.strip()
- LOGGER.info(f"{prefix} running '{cmd}'")
- subprocess.run(cmd, shell=True)
- yaml_save(f / 'metadata.yaml', self.metadata) # add metadata.yaml
- # Remove/rename TFLite models
- if self.args.int8:
- tmp_file.unlink(missing_ok=True)
- for file in f.rglob('*_dynamic_range_quant.tflite'):
- file.rename(file.with_name(file.stem.replace('_dynamic_range_quant', '_int8') + file.suffix))
- for file in f.rglob('*_integer_quant_with_int16_act.tflite'):
- file.unlink() # delete extra fp16 activation TFLite files
- # Add TFLite metadata
- for file in f.rglob('*.tflite'):
- f.unlink() if 'quant_with_int16_act.tflite' in str(f) else self._add_tflite_metadata(file)
- return str(f), tf.saved_model.load(f, tags=None, options=None) # load saved_model as Keras model
- @try_export
- def export_pb(self, keras_model, prefix=colorstr('TensorFlow GraphDef:')):
- """YOLOv8 TensorFlow GraphDef *.pb export https://github.com/leimao/Frozen_Graph_TensorFlow."""
- import tensorflow as tf # noqa
- from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2 # noqa
- LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...')
- f = self.file.with_suffix('.pb')
- m = tf.function(lambda x: keras_model(x)) # full model
- m = m.get_concrete_function(tf.TensorSpec(keras_model.inputs[0].shape, keras_model.inputs[0].dtype))
- frozen_func = convert_variables_to_constants_v2(m)
- frozen_func.graph.as_graph_def()
- tf.io.write_graph(graph_or_graph_def=frozen_func.graph, logdir=str(f.parent), name=f.name, as_text=False)
- return f, None
- @try_export
- def export_tflite(self, keras_model, nms, agnostic_nms, prefix=colorstr('TensorFlow Lite:')):
- """YOLOv8 TensorFlow Lite export."""
- import tensorflow as tf # noqa
- LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...')
- saved_model = Path(str(self.file).replace(self.file.suffix, '_saved_model'))
- if self.args.int8:
- f = saved_model / f'{self.file.stem}_int8.tflite' # fp32 in/out
- elif self.args.half:
- f = saved_model / f'{self.file.stem}_float16.tflite' # fp32 in/out
- else:
- f = saved_model / f'{self.file.stem}_float32.tflite'
- return str(f), None
- @try_export
- def export_edgetpu(self, tflite_model='', prefix=colorstr('Edge TPU:')):
- """YOLOv8 Edge TPU export https://coral.ai/docs/edgetpu/models-intro/."""
- LOGGER.warning(f'{prefix} WARNING ⚠️ Edge TPU known bug https://github.com/ultralytics/ultralytics/issues/1185')
- cmd = 'edgetpu_compiler --version'
- help_url = 'https://coral.ai/docs/edgetpu/compiler/'
- assert LINUX, f'export only supported on Linux. See {help_url}'
- if subprocess.run(cmd, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL, shell=True).returncode != 0:
- LOGGER.info(f'\n{prefix} export requires Edge TPU compiler. Attempting install from {help_url}')
- sudo = subprocess.run('sudo --version >/dev/null', shell=True).returncode == 0 # sudo installed on system
- for c in (
- 'curl https://packages.cloud.google.com/apt/doc/apt-key.gpg | sudo apt-key add -',
- 'echo "deb https://packages.cloud.google.com/apt coral-edgetpu-stable main" | sudo tee /etc/apt/sources.list.d/coral-edgetpu.list',
- 'sudo apt-get update', 'sudo apt-get install edgetpu-compiler'):
- subprocess.run(c if sudo else c.replace('sudo ', ''), shell=True, check=True)
- ver = subprocess.run(cmd, shell=True, capture_output=True, check=True).stdout.decode().split()[-1]
- LOGGER.info(f'\n{prefix} starting export with Edge TPU compiler {ver}...')
- f = str(tflite_model).replace('.tflite', '_edgetpu.tflite') # Edge TPU model
- cmd = f'edgetpu_compiler -s -d -k 10 --out_dir "{Path(f).parent}" "{tflite_model}"'
- LOGGER.info(f"{prefix} running '{cmd}'")
- subprocess.run(cmd, shell=True)
- self._add_tflite_metadata(f)
- return f, None
- @try_export
- def export_tfjs(self, prefix=colorstr('TensorFlow.js:')):
- """YOLOv8 TensorFlow.js export."""
- check_requirements('tensorflowjs')
- import tensorflow as tf
- import tensorflowjs as tfjs # noqa
- LOGGER.info(f'\n{prefix} starting export with tensorflowjs {tfjs.__version__}...')
- f = str(self.file).replace(self.file.suffix, '_web_model') # js dir
- f_pb = str(self.file.with_suffix('.pb')) # *.pb path
- gd = tf.Graph().as_graph_def() # TF GraphDef
- with open(f_pb, 'rb') as file:
- gd.ParseFromString(file.read())
- outputs = ','.join(gd_outputs(gd))
- LOGGER.info(f'\n{prefix} output node names: {outputs}')
- with spaces_in_path(f_pb) as fpb_, spaces_in_path(f) as f_: # exporter can not handle spaces in path
- cmd = f'tensorflowjs_converter --input_format=tf_frozen_model --output_node_names={outputs} "{fpb_}" "{f_}"'
- LOGGER.info(f"{prefix} running '{cmd}'")
- subprocess.run(cmd, shell=True)
- if ' ' in str(f):
- LOGGER.warning(f"{prefix} WARNING ⚠️ your model may not work correctly with spaces in path '{f}'.")
- # f_json = Path(f) / 'model.json' # *.json path
- # with open(f_json, 'w') as j: # sort JSON Identity_* in ascending order
- # subst = re.sub(
- # r'{"outputs": {"Identity.?.?": {"name": "Identity.?.?"}, '
- # r'"Identity.?.?": {"name": "Identity.?.?"}, '
- # r'"Identity.?.?": {"name": "Identity.?.?"}, '
- # r'"Identity.?.?": {"name": "Identity.?.?"}}}',
- # r'{"outputs": {"Identity": {"name": "Identity"}, '
- # r'"Identity_1": {"name": "Identity_1"}, '
- # r'"Identity_2": {"name": "Identity_2"}, '
- # r'"Identity_3": {"name": "Identity_3"}}}',
- # f_json.read_text(),
- # )
- # j.write(subst)
- yaml_save(Path(f) / 'metadata.yaml', self.metadata) # add metadata.yaml
- return f, None
- def _add_tflite_metadata(self, file):
- """Add metadata to *.tflite models per https://www.tensorflow.org/lite/models/convert/metadata."""
- from tflite_support import flatbuffers # noqa
- from tflite_support import metadata as _metadata # noqa
- from tflite_support import metadata_schema_py_generated as _metadata_fb # noqa
- # Create model info
- model_meta = _metadata_fb.ModelMetadataT()
- model_meta.name = self.metadata['description']
- model_meta.version = self.metadata['version']
- model_meta.author = self.metadata['author']
- model_meta.license = self.metadata['license']
- # Label file
- tmp_file = Path(file).parent / 'temp_meta.txt'
- with open(tmp_file, 'w') as f:
- f.write(str(self.metadata))
- label_file = _metadata_fb.AssociatedFileT()
- label_file.name = tmp_file.name
- label_file.type = _metadata_fb.AssociatedFileType.TENSOR_AXIS_LABELS
- # Create input info
- input_meta = _metadata_fb.TensorMetadataT()
- input_meta.name = 'image'
- input_meta.description = 'Input image to be detected.'
- input_meta.content = _metadata_fb.ContentT()
- input_meta.content.contentProperties = _metadata_fb.ImagePropertiesT()
- input_meta.content.contentProperties.colorSpace = _metadata_fb.ColorSpaceType.RGB
- input_meta.content.contentPropertiesType = _metadata_fb.ContentProperties.ImageProperties
- # Create output info
- output1 = _metadata_fb.TensorMetadataT()
- output1.name = 'output'
- output1.description = 'Coordinates of detected objects, class labels, and confidence score'
- output1.associatedFiles = [label_file]
- if self.model.task == 'segment':
- output2 = _metadata_fb.TensorMetadataT()
- output2.name = 'output'
- output2.description = 'Mask protos'
- output2.associatedFiles = [label_file]
- # Create subgraph info
- subgraph = _metadata_fb.SubGraphMetadataT()
- subgraph.inputTensorMetadata = [input_meta]
- subgraph.outputTensorMetadata = [output1, output2] if self.model.task == 'segment' else [output1]
- model_meta.subgraphMetadata = [subgraph]
- b = flatbuffers.Builder(0)
- b.Finish(model_meta.Pack(b), _metadata.MetadataPopulator.METADATA_FILE_IDENTIFIER)
- metadata_buf = b.Output()
- populator = _metadata.MetadataPopulator.with_model_file(str(file))
- populator.load_metadata_buffer(metadata_buf)
- populator.load_associated_files([str(tmp_file)])
- populator.populate()
- tmp_file.unlink()
- def _pipeline_coreml(self, model, weights_dir=None, prefix=colorstr('CoreML Pipeline:')):
- """YOLOv8 CoreML pipeline."""
- import coremltools as ct # noqa
- LOGGER.info(f'{prefix} starting pipeline with coremltools {ct.__version__}...')
- _, _, h, w = list(self.im.shape) # BCHW
- # Output shapes
- spec = model.get_spec()
- out0, out1 = iter(spec.description.output)
- if MACOS:
- from PIL import Image
- img = Image.new('RGB', (w, h)) # w=192, h=320
- out = model.predict({'image': img})
- out0_shape = out[out0.name].shape # (3780, 80)
- out1_shape = out[out1.name].shape # (3780, 4)
- else: # linux and windows can not run model.predict(), get sizes from PyTorch model output y
- out0_shape = self.output_shape[2], self.output_shape[1] - 4 # (3780, 80)
- out1_shape = self.output_shape[2], 4 # (3780, 4)
- # Checks
- names = self.metadata['names']
- nx, ny = spec.description.input[0].type.imageType.width, spec.description.input[0].type.imageType.height
- _, nc = out0_shape # number of anchors, number of classes
- # _, nc = out0.type.multiArrayType.shape
- assert len(names) == nc, f'{len(names)} names found for nc={nc}' # check
- # Define output shapes (missing)
- out0.type.multiArrayType.shape[:] = out0_shape # (3780, 80)
- out1.type.multiArrayType.shape[:] = out1_shape # (3780, 4)
- # spec.neuralNetwork.preprocessing[0].featureName = '0'
- # Flexible input shapes
- # from coremltools.models.neural_network import flexible_shape_utils
- # s = [] # shapes
- # s.append(flexible_shape_utils.NeuralNetworkImageSize(320, 192))
- # s.append(flexible_shape_utils.NeuralNetworkImageSize(640, 384)) # (height, width)
- # flexible_shape_utils.add_enumerated_image_sizes(spec, feature_name='image', sizes=s)
- # r = flexible_shape_utils.NeuralNetworkImageSizeRange() # shape ranges
- # r.add_height_range((192, 640))
- # r.add_width_range((192, 640))
- # flexible_shape_utils.update_image_size_range(spec, feature_name='image', size_range=r)
- # Print
- # print(spec.description)
- # Model from spec
- model = ct.models.MLModel(spec, weights_dir=weights_dir)
- # 3. Create NMS protobuf
- nms_spec = ct.proto.Model_pb2.Model()
- nms_spec.specificationVersion = 5
- for i in range(2):
- decoder_output = model._spec.description.output[i].SerializeToString()
- nms_spec.description.input.add()
- nms_spec.description.input[i].ParseFromString(decoder_output)
- nms_spec.description.output.add()
- nms_spec.description.output[i].ParseFromString(decoder_output)
- nms_spec.description.output[0].name = 'confidence'
- nms_spec.description.output[1].name = 'coordinates'
- output_sizes = [nc, 4]
- for i in range(2):
- ma_type = nms_spec.description.output[i].type.multiArrayType
- ma_type.shapeRange.sizeRanges.add()
- ma_type.shapeRange.sizeRanges[0].lowerBound = 0
- ma_type.shapeRange.sizeRanges[0].upperBound = -1
- ma_type.shapeRange.sizeRanges.add()
- ma_type.shapeRange.sizeRanges[1].lowerBound = output_sizes[i]
- ma_type.shapeRange.sizeRanges[1].upperBound = output_sizes[i]
- del ma_type.shape[:]
- nms = nms_spec.nonMaximumSuppression
- nms.confidenceInputFeatureName = out0.name # 1x507x80
- nms.coordinatesInputFeatureName = out1.name # 1x507x4
- nms.confidenceOutputFeatureName = 'confidence'
- nms.coordinatesOutputFeatureName = 'coordinates'
- nms.iouThresholdInputFeatureName = 'iouThreshold'
- nms.confidenceThresholdInputFeatureName = 'confidenceThreshold'
- nms.iouThreshold = 0.45
- nms.confidenceThreshold = 0.25
- nms.pickTop.perClass = True
- nms.stringClassLabels.vector.extend(names.values())
- nms_model = ct.models.MLModel(nms_spec)
- # 4. Pipeline models together
- pipeline = ct.models.pipeline.Pipeline(input_features=[('image', ct.models.datatypes.Array(3, ny, nx)),
- ('iouThreshold', ct.models.datatypes.Double()),
- ('confidenceThreshold', ct.models.datatypes.Double())],
- output_features=['confidence', 'coordinates'])
- pipeline.add_model(model)
- pipeline.add_model(nms_model)
- # Correct datatypes
- pipeline.spec.description.input[0].ParseFromString(model._spec.description.input[0].SerializeToString())
- pipeline.spec.description.output[0].ParseFromString(nms_model._spec.description.output[0].SerializeToString())
- pipeline.spec.description.output[1].ParseFromString(nms_model._spec.description.output[1].SerializeToString())
- # Update metadata
- pipeline.spec.specificationVersion = 5
- pipeline.spec.description.metadata.userDefined.update({
- 'IoU threshold': str(nms.iouThreshold),
- 'Confidence threshold': str(nms.confidenceThreshold)})
- # Save the model
- model = ct.models.MLModel(pipeline.spec, weights_dir=weights_dir)
- model.input_description['image'] = 'Input image'
- model.input_description['iouThreshold'] = f'(optional) IOU threshold override (default: {nms.iouThreshold})'
- model.input_description['confidenceThreshold'] = \
- f'(optional) Confidence threshold override (default: {nms.confidenceThreshold})'
- model.output_description['confidence'] = 'Boxes × Class confidence (see user-defined metadata "classes")'
- model.output_description['coordinates'] = 'Boxes × [x, y, width, height] (relative to image size)'
- LOGGER.info(f'{prefix} pipeline success')
- return model
- def add_callback(self, event: str, callback):
- """
- Appends the given callback.
- """
- self.callbacks[event].append(callback)
- def run_callbacks(self, event: str):
- """Execute all callbacks for a given event."""
- for callback in self.callbacks.get(event, []):
- callback(self)
- class IOSDetectModel(torch.nn.Module):
- """Wrap an Ultralytics YOLO model for Apple iOS CoreML export."""
- def __init__(self, model, im):
- """Initialize the IOSDetectModel class with a YOLO model and example image."""
- super().__init__()
- _, _, h, w = im.shape # batch, channel, height, width
- self.model = model
- self.nc = len(model.names) # number of classes
- if w == h:
- self.normalize = 1.0 / w # scalar
- else:
- self.normalize = torch.tensor([1.0 / w, 1.0 / h, 1.0 / w, 1.0 / h]) # broadcast (slower, smaller)
- def forward(self, x):
- """Normalize predictions of object detection model with input size-dependent factors."""
- xywh, cls = self.model(x)[0].transpose(0, 1).split((4, self.nc), 1)
- return cls, xywh * self.normalize # confidence (3780, 80), coordinates (3780, 4)
|