yolov6.yaml 1.7 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253
  1. # Ultralytics YOLO 🚀, AGPL-3.0 license
  2. # YOLOv6 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/models/yolov6
  3. # Parameters
  4. nc: 80 # number of classes
  5. activation: nn.ReLU() # (optional) model default activation function
  6. scales: # model compound scaling constants, i.e. 'model=yolov6n.yaml' will call yolov8.yaml with scale 'n'
  7. # [depth, width, max_channels]
  8. n: [0.33, 0.25, 1024]
  9. s: [0.33, 0.50, 1024]
  10. m: [0.67, 0.75, 768]
  11. l: [1.00, 1.00, 512]
  12. x: [1.00, 1.25, 512]
  13. # YOLOv6-3.0s backbone
  14. backbone:
  15. # [from, repeats, module, args]
  16. - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
  17. - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
  18. - [-1, 6, Conv, [128, 3, 1]]
  19. - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
  20. - [-1, 12, Conv, [256, 3, 1]]
  21. - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
  22. - [-1, 18, Conv, [512, 3, 1]]
  23. - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
  24. - [-1, 6, Conv, [1024, 3, 1]]
  25. - [-1, 1, SPPF, [1024, 5]] # 9
  26. # YOLOv6-3.0s head
  27. head:
  28. - [-1, 1, Conv, [256, 1, 1]]
  29. - [-1, 1, nn.ConvTranspose2d, [256, 2, 2, 0]]
  30. - [[-1, 6], 1, Concat, [1]] # cat backbone P4
  31. - [-1, 1, Conv, [256, 3, 1]]
  32. - [-1, 9, Conv, [256, 3, 1]] # 14
  33. - [-1, 1, Conv, [128, 1, 1]]
  34. - [-1, 1, nn.ConvTranspose2d, [128, 2, 2, 0]]
  35. - [[-1, 4], 1, Concat, [1]] # cat backbone P3
  36. - [-1, 1, Conv, [128, 3, 1]]
  37. - [-1, 9, Conv, [128, 3, 1]] # 19
  38. - [-1, 1, Conv, [128, 3, 2]]
  39. - [[-1, 15], 1, Concat, [1]] # cat head P4
  40. - [-1, 1, Conv, [256, 3, 1]]
  41. - [-1, 9, Conv, [256, 3, 1]] # 23
  42. - [-1, 1, Conv, [256, 3, 2]]
  43. - [[-1, 10], 1, Concat, [1]] # cat head P5
  44. - [-1, 1, Conv, [512, 3, 1]]
  45. - [-1, 9, Conv, [512, 3, 1]] # 27
  46. - [[19, 23, 27], 1, Detect, [nc]] # Detect(P3, P4, P5)