yolov3-spp.yaml 1.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748
  1. # Ultralytics YOLO 🚀, AGPL-3.0 license
  2. # YOLOv3-SPP object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/yolov3
  3. # Parameters
  4. nc: 80 # number of classes
  5. depth_multiple: 1.0 # model depth multiple
  6. width_multiple: 1.0 # layer channel multiple
  7. # darknet53 backbone
  8. backbone:
  9. # [from, number, module, args]
  10. [[-1, 1, Conv, [32, 3, 1]], # 0
  11. [-1, 1, Conv, [64, 3, 2]], # 1-P1/2
  12. [-1, 1, Bottleneck, [64]],
  13. [-1, 1, Conv, [128, 3, 2]], # 3-P2/4
  14. [-1, 2, Bottleneck, [128]],
  15. [-1, 1, Conv, [256, 3, 2]], # 5-P3/8
  16. [-1, 8, Bottleneck, [256]],
  17. [-1, 1, Conv, [512, 3, 2]], # 7-P4/16
  18. [-1, 8, Bottleneck, [512]],
  19. [-1, 1, Conv, [1024, 3, 2]], # 9-P5/32
  20. [-1, 4, Bottleneck, [1024]], # 10
  21. ]
  22. # YOLOv3-SPP head
  23. head:
  24. [[-1, 1, Bottleneck, [1024, False]],
  25. [-1, 1, SPP, [512, [5, 9, 13]]],
  26. [-1, 1, Conv, [1024, 3, 1]],
  27. [-1, 1, Conv, [512, 1, 1]],
  28. [-1, 1, Conv, [1024, 3, 1]], # 15 (P5/32-large)
  29. [-2, 1, Conv, [256, 1, 1]],
  30. [-1, 1, nn.Upsample, [None, 2, 'nearest']],
  31. [[-1, 8], 1, Concat, [1]], # cat backbone P4
  32. [-1, 1, Bottleneck, [512, False]],
  33. [-1, 1, Bottleneck, [512, False]],
  34. [-1, 1, Conv, [256, 1, 1]],
  35. [-1, 1, Conv, [512, 3, 1]], # 22 (P4/16-medium)
  36. [-2, 1, Conv, [128, 1, 1]],
  37. [-1, 1, nn.Upsample, [None, 2, 'nearest']],
  38. [[-1, 6], 1, Concat, [1]], # cat backbone P3
  39. [-1, 1, Bottleneck, [256, False]],
  40. [-1, 2, Bottleneck, [256, False]], # 27 (P3/8-small)
  41. [[27, 22, 15], 1, Detect, [nc]], # Detect(P3, P4, P5)
  42. ]